000893875 001__ 893875
000893875 005__ 20210810182034.0
000893875 0247_ $$2doi$$a10.1016/j.ultramic.2020.113175
000893875 0247_ $$2ISSN$$a0304-3991
000893875 0247_ $$2ISSN$$a1879-2723
000893875 0247_ $$2Handle$$a2128/28336
000893875 0247_ $$2pmid$$a33383361
000893875 0247_ $$2WOS$$aWOS:000613507200002
000893875 037__ $$aFZJ-2021-02887
000893875 041__ $$aEnglish
000893875 082__ $$a570
000893875 1001_ $$0P:(DE-HGF)0$$aGrieb, Tim$$b0$$eCorresponding author
000893875 245__ $$aAngle-resolved STEM using an iris aperture: Scattering contributions and sources of error for the quantitative analysis in Si
000893875 260__ $$aAmsterdam$$bElsevier Science$$c2021
000893875 3367_ $$2DRIVER$$aarticle
000893875 3367_ $$2DataCite$$aOutput Types/Journal article
000893875 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1627306542_11206
000893875 3367_ $$2BibTeX$$aARTICLE
000893875 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893875 3367_ $$00$$2EndNote$$aJournal Article
000893875 520__ $$aThe angle-resolved electron scattering is investigated in scanning-transmission electron microscopy (STEM) using a motorised iris aperture placed above a conventional annular detector. The electron intensity scattered into various angle ranges is compared with simulations that were carried out in the frozen-lattice approximation. As figure of merit for the agreement of experiment and simulation we evaluate the specimen thickness which is compared with the thickness obtained from position-averaged convergent beam electron diffraction (PACBED). We find deviations whose strengths depend on the angular range of the detected electrons. As possible sources of error we investigate, for example, the influences of amorphous surface layers, inelastic scattering (plasmon excitation), phonon-correlation within the frozen-lattice approach, and distortions in the diffraction plane of the microscope. The evaluation is performed for four experimental thicknesses and two angle-resolved STEM series under different camera lengths. The results clearly show that especially for scattering angles below 50 mrad, it is mandatory that the simulations take scattering effects into account which are usually neglected for simulating high-angle scattering. Most influences predominantly affect the low-angle range, but also high scattering angles can be affected (e.g. by amorphous surface covering).
000893875 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000893875 536__ $$0G:(DE-HGF)VH-NG-1317$$amoreSTEM - Momentum-resolved Scanning Transmission Electron Microscopy (VH-NG-1317)$$cVH-NG-1317$$x1
000893875 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893875 7001_ $$0P:(DE-Juel1)174034$$aKrause, Florian F.$$b1
000893875 7001_ $$0P:(DE-Juel1)165314$$aMüller-Caspary, Knut$$b2$$ufzj
000893875 7001_ $$0P:(DE-HGF)0$$aFiroozabadi, Saleh$$b3
000893875 7001_ $$0P:(DE-HGF)0$$aMahr, Christoph$$b4
000893875 7001_ $$0P:(DE-HGF)0$$aSchowalter, Marco$$b5
000893875 7001_ $$0P:(DE-HGF)0$$aBeyer, Andreas$$b6
000893875 7001_ $$0P:(DE-HGF)0$$aOppermann, Oliver$$b7
000893875 7001_ $$0P:(DE-HGF)0$$aVolz, Kerstin$$b8
000893875 7001_ $$0P:(DE-HGF)0$$aRosenauer, Andreas$$b9
000893875 773__ $$0PERI:(DE-600)1479043-9$$a10.1016/j.ultramic.2020.113175$$gVol. 221, p. 113175 -$$p113175 -$$tUltramicroscopy$$v221$$x0304-3991$$y2021
000893875 8564_ $$uhttps://juser.fz-juelich.de/record/893875/files/Angle-resolved_typesetting.pdf$$yOpenAccess
000893875 909CO $$ooai:juser.fz-juelich.de:893875$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893875 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165314$$aForschungszentrum Jülich$$b2$$kFZJ
000893875 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000893875 9141_ $$y2021
000893875 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000893875 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000893875 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-03
000893875 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000893875 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000893875 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bULTRAMICROSCOPY : 2019$$d2021-02-03
000893875 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-02-03
000893875 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000893875 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000893875 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000893875 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893875 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000893875 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000893875 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000893875 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000893875 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000893875 920__ $$lyes
000893875 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000893875 980__ $$ajournal
000893875 980__ $$aVDB
000893875 980__ $$aUNRESTRICTED
000893875 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000893875 9801_ $$aFullTexts