000893876 001__ 893876
000893876 005__ 20210914122704.0
000893876 0247_ $$2doi$$a10.1016/j.ultramic.2021.113221
000893876 0247_ $$2ISSN$$a0304-3991
000893876 0247_ $$2ISSN$$a1879-2723
000893876 0247_ $$2Handle$$a2128/28578
000893876 0247_ $$2pmid$$a33588232
000893876 0247_ $$2WOS$$aWOS:000632279200008
000893876 037__ $$aFZJ-2021-02888
000893876 041__ $$aEnglish
000893876 082__ $$a570
000893876 1001_ $$0P:(DE-HGF)0$$aKrause, Florian F.$$b0$$eCorresponding author
000893876 245__ $$aPrecise measurement of the electron beam current in a TEM
000893876 260__ $$aAmsterdam$$bElsevier Science$$c2021
000893876 3367_ $$2DRIVER$$aarticle
000893876 3367_ $$2DataCite$$aOutput Types/Journal article
000893876 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1630399802_4816
000893876 3367_ $$2BibTeX$$aARTICLE
000893876 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893876 3367_ $$00$$2EndNote$$aJournal Article
000893876 500__ $$aBitte Post-print ergänzen
000893876 520__ $$aModern quantitative TEM methods such as the -factor technique require precise knowledge of the electron beam current. To this end, a macroscopic Faraday cup was designed and constructed. It can replace the viewing screen in the projection chamber of a TEM and guarantees highly accurate measurement of the electron beam with precision only limited by the used amperemeter. The easy to install, affordable device is shown to be highly apt for precision measurement of currents . The Faraday cup results are used for an assessment and a comparison of various other beam current measurement methods. It is found that the built-in screen amperemeter of the used TEM is quite inaccurate and that measurements using the screen in general tend to underestimate the current. If present, the drift tube of a spectrometer can also be used as a Faraday cup, but certain described peculiarities have to be taken into account. Direct ultrafast electron detection cameras allow precise measurement at very small currents. For the electron counting technique, which exploits single electron detection capabilities of STEM detectors, a systematic current underestimation was observed and investigated. This results in a reformulated routine for the method and with these improvements it is demonstrated to be capable of accurate high-precision measurements for currents
000893876 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000893876 536__ $$0G:(DE-HGF)VH-NG-1317$$amoreSTEM - Momentum-resolved Scanning Transmission Electron Microscopy (VH-NG-1317)$$cVH-NG-1317$$x1
000893876 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893876 7001_ $$0P:(DE-HGF)0$$aSchowalter, Marco$$b1
000893876 7001_ $$0P:(DE-HGF)0$$aOppermann, Oliver$$b2
000893876 7001_ $$0P:(DE-HGF)0$$aMarquardt, Dennis$$b3
000893876 7001_ $$0P:(DE-Juel1)165314$$aMüller-Caspary, Knut$$b4
000893876 7001_ $$0P:(DE-HGF)0$$aRitz, Robert$$b5
000893876 7001_ $$0P:(DE-HGF)0$$aSimson, Martin$$b6
000893876 7001_ $$0P:(DE-HGF)0$$aRyll, Henning$$b7
000893876 7001_ $$0P:(DE-HGF)0$$aHuth, Martin$$b8
000893876 7001_ $$0P:(DE-HGF)0$$aSoltau, Heike$$b9
000893876 7001_ $$0P:(DE-HGF)0$$aRosenauer, Andreas$$b10
000893876 773__ $$0PERI:(DE-600)1479043-9$$a10.1016/j.ultramic.2021.113221$$gVol. 223, p. 113221 -$$p113221 -$$tUltramicroscopy$$v223$$x0304-3991$$y2021
000893876 8564_ $$uhttps://juser.fz-juelich.de/record/893876/files/Strommessung_v1.1.pdf$$yOpenAccess
000893876 909CO $$ooai:juser.fz-juelich.de:893876$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893876 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165314$$aForschungszentrum Jülich$$b4$$kFZJ
000893876 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000893876 9141_ $$y2021
000893876 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000893876 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000893876 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-03
000893876 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000893876 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000893876 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bULTRAMICROSCOPY : 2019$$d2021-02-03
000893876 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-02-03
000893876 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000893876 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000893876 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000893876 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893876 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000893876 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000893876 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000893876 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000893876 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000893876 920__ $$lyes
000893876 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000893876 980__ $$ajournal
000893876 980__ $$aVDB
000893876 980__ $$aUNRESTRICTED
000893876 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000893876 9801_ $$aFullTexts