000893883 001__ 893883
000893883 005__ 20241127124643.0
000893883 0247_ $$2doi$$a10.1016/j.adapen.2021.100050
000893883 0247_ $$2Handle$$a2128/28055
000893883 0247_ $$2altmetric$$aaltmetric:108713376
000893883 0247_ $$2WOS$$aWOS:001022693500011
000893883 037__ $$aFZJ-2021-02895
000893883 082__ $$a333.7
000893883 1001_ $$0P:(DE-Juel1)174596$$aSchorn, Felix$$b0$$eCorresponding author$$ufzj
000893883 245__ $$aMethanol as a renewable energy carrier: An assessment of production and transportation costs for selected global locations
000893883 260__ $$a[Amsterdam]$$bElsevier ScienceDirect$$c2021
000893883 3367_ $$2DRIVER$$aarticle
000893883 3367_ $$2DataCite$$aOutput Types/Journal article
000893883 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625853358_24397
000893883 3367_ $$2BibTeX$$aARTICLE
000893883 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893883 3367_ $$00$$2EndNote$$aJournal Article
000893883 520__ $$aThe importing of renewable energy will be one part of the process of defossilizing the energy systems of countries and regions, which are currently heavily dependent on the import of fossil-based energy carriers. This study investigates the possibility of importing renewable methanol comprised of hydrogen and carbon dioxide. Based on a methanol synthesis simulation model, the net production costs of methanol are derived as a function of hydrogen and carbon dioxide expenses. These findings enable a comparison of the import costs of methanol and hydrogen. For this, the hydrogen production and distribution costs for 2030 as reported in a recent study for four different origin/destination country combinations are considered. With the predicted hydrogen production costs of 1.35–2 €/kg and additional shipping costs, methanol can be imported for 370–600 €/t if renewable or process-related carbon dioxide is available at costs of 100 €/t or below in the hydrogen-producing country. Compared to the current fossil market price of approximately 400 €/t, renewable methanol could therefore become cost-competitive. Within the range of carbon dioxide prices of 30–100 €/t, both hydrogen and methanol exhibit comparable energy-specific import costs of 18–30 €/GJ. Hence, the additional costs for upgrading hydrogen to methanol are balanced out by the lower shipping costs of methanol compared to hydrogen. Lastly, a comparison for producing methanol in the hydrogen's origin or destination country indicates that carbon dioxide in the destination country must be 181–228 €/t less expensive than that in the origin country, to balance out the more expensive shipping costs for hydrogen.
000893883 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000893883 536__ $$0G:(DE-HGF)POF4-1111$$a1111 - Effective System Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x1
000893883 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x2
000893883 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893883 7001_ $$0P:(DE-Juel1)172087$$aBreuer, Janos L.$$b1$$ufzj
000893883 7001_ $$0P:(DE-Juel1)207065$$aSamsun, Remzi Can$$b2$$ufzj
000893883 7001_ $$0P:(DE-HGF)0$$aSchnorbus, Thorsten$$b3
000893883 7001_ $$0P:(DE-HGF)0$$aHeuser, Benedikt$$b4
000893883 7001_ $$0P:(DE-Juel1)129902$$aPeters, Ralf$$b5$$ufzj
000893883 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b6$$ufzj
000893883 773__ $$0PERI:(DE-600)3060775-9$$a10.1016/j.adapen.2021.100050$$gVol. 3, p. 100050 -$$p100050 -$$tAdvances in applied energy$$v3$$x2666-7924$$y2021
000893883 8564_ $$uhttps://juser.fz-juelich.de/record/893883/files/1-s2.0-S2666792421000421-main.pdf$$yOpenAccess
000893883 909CO $$ooai:juser.fz-juelich.de:893883$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893883 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174596$$aForschungszentrum Jülich$$b0$$kFZJ
000893883 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)174596$$aRWTH Aachen$$b0$$kRWTH
000893883 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172087$$aForschungszentrum Jülich$$b1$$kFZJ
000893883 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172087$$aRWTH Aachen$$b1$$kRWTH
000893883 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207065$$aForschungszentrum Jülich$$b2$$kFZJ
000893883 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129902$$aForschungszentrum Jülich$$b5$$kFZJ
000893883 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b6$$kFZJ
000893883 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b6$$kRWTH
000893883 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000893883 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1111$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x1
000893883 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x2
000893883 9141_ $$y2021
000893883 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893883 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893883 920__ $$lyes
000893883 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000893883 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x1
000893883 9801_ $$aFullTexts
000893883 980__ $$ajournal
000893883 980__ $$aVDB
000893883 980__ $$aUNRESTRICTED
000893883 980__ $$aI:(DE-Juel1)IEK-14-20191129
000893883 980__ $$aI:(DE-Juel1)IEK-3-20101013
000893883 981__ $$aI:(DE-Juel1)IET-4-20191129
000893883 981__ $$aI:(DE-Juel1)ICE-2-20101013
000893883 981__ $$aI:(DE-Juel1)IET-4-20191129