000893890 001__ 893890
000893890 005__ 20240711085629.0
000893890 0247_ $$2doi$$a10.1007/s11666-021-01228-5
000893890 0247_ $$2ISSN$$a1059-9630
000893890 0247_ $$2ISSN$$a1544-1016
000893890 0247_ $$2Handle$$a2128/28548
000893890 0247_ $$2WOS$$aWOS:000670181200002
000893890 037__ $$aFZJ-2021-02902
000893890 082__ $$a670
000893890 1001_ $$0P:(DE-HGF)0$$aKumar, Nitish$$b0
000893890 245__ $$aColumnar Thermal Barrier Coatings Produced by Different Thermal Spray Processes
000893890 260__ $$aBoston, Mass.$$bSpringer$$c2021
000893890 3367_ $$2DRIVER$$aarticle
000893890 3367_ $$2DataCite$$aOutput Types/Journal article
000893890 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1629286605_17975
000893890 3367_ $$2BibTeX$$aARTICLE
000893890 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893890 3367_ $$00$$2EndNote$$aJournal Article
000893890 520__ $$aSuspension plasma spraying (SPS) and plasma spray-physical vapor deposition (PS-PVD) are the only thermal spray technologies shown to be capable of producing TBCs with columnar microstructures similar to the electron beam-physical vapor deposition (EB-PVD) process but at higher deposition rates and relatively lower costs. The objective of this study was to achieve fundamental understanding of the effect of different columnar microstructures produced by these two thermal spray processes on their insulation and lifetime performance and propose an optimized columnar microstructure. Characterization of TBCs in terms of microstructure, thermal conductivity, thermal cyclic fatigue lifetime and burner rig lifetime was performed. The results were compared with TBCs produced by the standard thermal spray technique, atmospheric plasma spraying (APS). Bondcoats deposited by the emerging high-velocity air fuel (HVAF) spraying were compared to the standard vacuum plasma-sprayed (VPS) bondcoats to investigate the influence of the bondcoat deposition process as well as topcoat–bondcoat interface topography. The results showed that the dense PS-PVD-processed TBC had the highest lifetime, although at an expense of the highest thermal conductivity. The reason for this behavior was attributed to the dense intracolumnar structure, wide intercolumnar gaps and high column density, thus improving the strain tolerance and fracture toughness.
000893890 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x0
000893890 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893890 7001_ $$0P:(DE-HGF)0$$aGupta, Mohit$$b1$$eCorresponding author
000893890 7001_ $$0P:(DE-Juel1)129630$$aMack, Daniel E.$$b2
000893890 7001_ $$0P:(DE-Juel1)129633$$aMauer, Georg$$b3
000893890 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b4
000893890 773__ $$0PERI:(DE-600)2047715-6$$a10.1007/s11666-021-01228-5$$p1437-1452$$tJournal of thermal spray technology$$v30$$x1544-1016$$y2021
000893890 8564_ $$uhttps://juser.fz-juelich.de/record/893890/files/JTST_Vol30_No6_2021_pp1437_1452.pdf$$yOpenAccess
000893890 909CO $$ooai:juser.fz-juelich.de:893890$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129630$$aForschungszentrum Jülich$$b2$$kFZJ
000893890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129633$$aForschungszentrum Jülich$$b3$$kFZJ
000893890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b4$$kFZJ
000893890 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
000893890 9141_ $$y2021
000893890 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000893890 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-27
000893890 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893890 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000893890 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ THERM SPRAY TECHN : 2019$$d2021-01-27
000893890 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000893890 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-27$$wger
000893890 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000893890 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000893890 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893890 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000893890 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000893890 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000893890 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000893890 920__ $$lyes
000893890 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000893890 9801_ $$aFullTexts
000893890 980__ $$ajournal
000893890 980__ $$aVDB
000893890 980__ $$aUNRESTRICTED
000893890 980__ $$aI:(DE-Juel1)IEK-1-20101013
000893890 981__ $$aI:(DE-Juel1)IMD-2-20101013