TY - JOUR
AU - Wang, Fangzhou
AU - Bürgler, Daniel E.
AU - Adam, Roman
AU - Parlak, Umut
AU - Cao, Derang
AU - Greb, Christian
AU - Heidtfeld, Sarah
AU - Schneider, Claus M.
TI - Magnetization relaxation dynamics in [ Co / Pt ] 3 multilayers on pico- and nanosecond timescales
JO - Physical review research
VL - 3
IS - 3
SN - 2643-1564
CY - College Park, MD
PB - APS
M1 - FZJ-2021-02903
SP - 033061
PY - 2021
AB - We experimentally investigated magnetization relaxation dynamics in the largely unexplored time window extending from few picoseconds up to two nanoseconds following femtosecond laser pulse excitation. We triggered magnetization dynamics in [Co(0.4nm)/Pt(0.7nm)]3 multilayers and measured the resulting magneto-optic response by recording both transient hysteresis loops as well as transients of magnetization dynamics. We observe that the coercive field of the sample is still strongly suppressed even ∼1 ms after the laser excitation, which is three orders of magnitude longer than the recovery time of the magnetization amplitude. In addition, we succeeded to fit the magnetization relaxation data in the entire experimentally observed time window by considering two phenomenological time constants τ∗f and τ∗s describing fast (ps) and slow (ns) magnetization relaxation processes, respectively. The fits of the data suggest a magnetic field dependent relaxation slowdown beyond 100 ps after excitation. We observe an explosion of the τ∗f and τ∗s values when the magnetization is completely quenched and relaxes intrinsically in the absence of an external magnetic field. We interpret the phenomenological time constants τ∗f and τ∗s using an intuitive physical picture based on the Landau-Lifshitz-Bloch model and numerical solutions of the extended three-temperature model [Shim et al., Sci. Rep. 10, 6355 (2020)].
LB - PUB:(DE-HGF)16
UR - <Go to ISI:>//WOS:000674633500008
DO - DOI:10.1103/PhysRevResearch.3.033061
UR - https://juser.fz-juelich.de/record/893891
ER -