001     893891
005     20240507205534.0
024 7 _ |a 10.1103/PhysRevResearch.3.033061
|2 doi
024 7 _ |a 2128/28425
|2 Handle
024 7 _ |a altmetric:109925926
|2 altmetric
024 7 _ |a WOS:000674633500008
|2 WOS
037 _ _ |a FZJ-2021-02903
082 _ _ |a 530
100 1 _ |a Wang, Fangzhou
|0 P:(DE-Juel1)174477
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Magnetization relaxation dynamics in [ Co / Pt ] 3 multilayers on pico- and nanosecond timescales
260 _ _ |a College Park, MD
|c 2021
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1715084752_1367
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We experimentally investigated magnetization relaxation dynamics in the largely unexplored time window extending from few picoseconds up to two nanoseconds following femtosecond laser pulse excitation. We triggered magnetization dynamics in [Co(0.4nm)/Pt(0.7nm)]3 multilayers and measured the resulting magneto-optic response by recording both transient hysteresis loops as well as transients of magnetization dynamics. We observe that the coercive field of the sample is still strongly suppressed even ∼1 ms after the laser excitation, which is three orders of magnitude longer than the recovery time of the magnetization amplitude. In addition, we succeeded to fit the magnetization relaxation data in the entire experimentally observed time window by considering two phenomenological time constants τ∗f and τ∗s describing fast (ps) and slow (ns) magnetization relaxation processes, respectively. The fits of the data suggest a magnetic field dependent relaxation slowdown beyond 100 ps after excitation. We observe an explosion of the τ∗f and τ∗s values when the magnetization is completely quenched and relaxes intrinsically in the absence of an external magnetic field. We interpret the phenomenological time constants τ∗f and τ∗s using an intuitive physical picture based on the Landau-Lifshitz-Bloch model and numerical solutions of the extended three-temperature model [Shim et al., Sci. Rep. 10, 6355 (2020)].
536 _ _ |a 5214 - Quantum State Preparation and Control (POF4-521)
|0 G:(DE-HGF)POF4-5214
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bürgler, Daniel E.
|0 P:(DE-Juel1)130582
|b 1
700 1 _ |a Adam, Roman
|0 P:(DE-Juel1)130495
|b 2
|u fzj
700 1 _ |a Parlak, Umut
|0 P:(DE-Juel1)165684
|b 3
700 1 _ |a Cao, Derang
|0 P:(DE-Juel1)177876
|b 4
|u fzj
700 1 _ |a Greb, Christian
|0 P:(DE-Juel1)173666
|b 5
700 1 _ |a Heidtfeld, Sarah
|0 P:(DE-Juel1)173665
|b 6
|u fzj
700 1 _ |a Schneider, Claus M.
|0 P:(DE-Juel1)130948
|b 7
|u fzj
773 _ _ |a 10.1103/PhysRevResearch.3.033061
|g Vol. 3, no. 3, p. 033061
|0 PERI:(DE-600)3004165-X
|n 3
|p 033061
|t Physical review research
|v 3
|y 2021
|x 2643-1564
856 4 _ |u https://juser.fz-juelich.de/record/893891/files/INV_21_JUL_006162-1.pdf
856 4 _ |u https://juser.fz-juelich.de/record/893891/files/PhysRevResearch.3.033061.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:893891
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174477
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130582
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130495
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)177876
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)173666
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)173665
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130948
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5214
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV RES : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-16T10:08:58Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-16T10:08:58Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-08-16T10:08:58Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2022-08-16T10:08:58Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21