000893892 001__ 893892
000893892 005__ 20220131120348.0
000893892 0247_ $$2doi$$a10.1038/s41598-020-74434-w
000893892 0247_ $$2Handle$$a2128/28037
000893892 0247_ $$2altmetric$$aaltmetric:92879342
000893892 0247_ $$2pmid$$a33087734
000893892 0247_ $$2WOS$$aWOS:000585143800023
000893892 037__ $$aFZJ-2021-02904
000893892 041__ $$aEnglish
000893892 082__ $$a600
000893892 1001_ $$0P:(DE-HGF)0$$aBeyer, Andreas$$b0$$eCorresponding author
000893892 245__ $$aInfluence of plasmon excitations on atomic-resolution quantitative 4D scanning transmission electron microscopy
000893892 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2020
000893892 3367_ $$2DRIVER$$aarticle
000893892 3367_ $$2DataCite$$aOutput Types/Journal article
000893892 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625665339_20460
000893892 3367_ $$2BibTeX$$aARTICLE
000893892 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893892 3367_ $$00$$2EndNote$$aJournal Article
000893892 520__ $$aScanning transmission electron microscopy (STEM) allows to gain quantitative information on the atomic-scale structure and composition of materials, satisfying one of todays major needs in the development of novel nanoscale devices. The aim of this study is to quantify the impact of inelastic, i.e. plasmon excitations (PE), on the angular dependence of STEM intensities and answer the question whether these excitations are responsible for a drastic mismatch between experiments and contemporary image simulations observed at scattering angles below ∼ 40 mrad. For the two materials silicon and platinum, the angular dependencies of elastic and inelastic scattering are investigated. We utilize energy filtering in two complementary microscopes, which are representative for the systems used for quantitative STEM, to form position-averaged diffraction patterns as well as atomically resolved 4D STEM data sets for different energy ranges. The resulting five-dimensional data are used to elucidate the distinct features in real and momentum space for different energy losses. We find different angular distributions for the elastic and inelastic scattering, resulting in an increased low-angle intensity (∼ 10–40 mrad). The ratio of inelastic/elastic scattering increases with rising sample thickness, while the general shape of the angular dependency is maintained. Moreover, the ratio increases with the distance to an atomic column in the low-angle regime. Since PE are usually neglected in image simulations, consequently the experimental intensity is underestimated at these angles, which especially affects bright field or low-angle annular dark field imaging. The high-angle regime, however, is unaffected. In addition, we find negligible impact of inelastic scattering on first-moment imaging in momentum-resolved STEM, which is important for STEM techniques to measure internal electric fields in functional nanostructures. To resolve the discrepancies between experiment and simulation, we present an adopted simulation scheme including PE. This study highlights the necessity to take into account PE to achieve quantitative agreement between simulation and experiment. Besides solving the fundamental question of missing physics in established simulations, this finally allows for the quantitative evaluation of low-angle scattering, which contains valuable information about the material investigated.
000893892 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000893892 536__ $$0G:(DE-HGF)VH-NG-1317$$amoreSTEM - Momentum-resolved Scanning Transmission Electron Microscopy (VH-NG-1317)$$cVH-NG-1317$$x1
000893892 588__ $$aDataset connected to DataCite
000893892 7001_ $$0P:(DE-Juel1)178709$$aKrause, Florian$$b1
000893892 7001_ $$0P:(DE-Juel1)177676$$aRobert, Hoel L.$$b2$$ufzj
000893892 7001_ $$0P:(DE-HGF)0$$aFiroozabadi, Saleh$$b3
000893892 7001_ $$0P:(DE-HGF)0$$aGrieb, Tim$$b4
000893892 7001_ $$0P:(DE-HGF)0$$aKükelhan, Pirmin$$b5
000893892 7001_ $$0P:(DE-HGF)0$$aHeimes, Damien$$b6
000893892 7001_ $$0P:(DE-HGF)0$$aSchowalter, Marco$$b7
000893892 7001_ $$0P:(DE-Juel1)165314$$aMüller-Caspary, Knut$$b8$$ufzj
000893892 7001_ $$0P:(DE-HGF)0$$aRosenauer, Andreas$$b9
000893892 7001_ $$0P:(DE-HGF)0$$aVolz, Kerstin$$b10
000893892 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-020-74434-w$$gVol. 10, no. 1, p. 17890$$n1$$p17890$$tScientific reports$$v10$$x2045-2322$$y2020
000893892 8564_ $$uhttps://juser.fz-juelich.de/record/893892/files/s41598-020-74434-w.pdf$$yOpenAccess
000893892 909CO $$ooai:juser.fz-juelich.de:893892$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893892 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177676$$aForschungszentrum Jülich$$b2$$kFZJ
000893892 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165314$$aForschungszentrum Jülich$$b8$$kFZJ
000893892 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000893892 9141_ $$y2021
000893892 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893892 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000893892 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000893892 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-03
000893892 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000893892 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000893892 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2021-02-03
000893892 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2019$$d2021-02-03
000893892 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-03
000893892 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-03
000893892 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000893892 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000893892 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000893892 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000893892 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893892 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000893892 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000893892 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000893892 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000893892 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-03
000893892 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000893892 920__ $$lyes
000893892 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000893892 980__ $$ajournal
000893892 980__ $$aVDB
000893892 980__ $$aUNRESTRICTED
000893892 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000893892 9801_ $$aFullTexts