000893893 001__ 893893
000893893 005__ 20220131120348.0
000893893 0247_ $$2doi$$a10.1016/j.ultramic.2020.113046
000893893 0247_ $$2ISSN$$a0304-3991
000893893 0247_ $$2ISSN$$a1879-2723
000893893 0247_ $$2Handle$$a2128/28091
000893893 0247_ $$2pmid$$a32927326
000893893 0247_ $$2WOS$$aWOS:000594768500005
000893893 037__ $$aFZJ-2021-02905
000893893 082__ $$a570
000893893 1001_ $$0P:(DE-HGF)0$$aFatermans, J.$$b0
000893893 245__ $$aAtom column detection from simultaneously acquired ABF and ADF STEM images
000893893 260__ $$aAmsterdam$$bElsevier Science$$c2020
000893893 3367_ $$2DRIVER$$aarticle
000893893 3367_ $$2DataCite$$aOutput Types/Journal article
000893893 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625926856_15554
000893893 3367_ $$2BibTeX$$aARTICLE
000893893 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893893 3367_ $$00$$2EndNote$$aJournal Article
000893893 520__ $$aIn electron microscopy, the maximum a posteriori (MAP) probability rule has been introduced as a tool to determine the most probable atomic structure from high-resolution annular dark-field (ADF) scanning transmission electron microscopy (STEM) images exhibiting low contrast-to-noise ratio (CNR). Besides ADF imaging, STEM can also be applied in the annular bright-field (ABF) regime. The ABF STEM mode allows to directly visualize light-element atomic columns in the presence of heavy columns. Typically, light-element nanomaterials are sensitive to the electron beam, limiting the incoming electron dose in order to avoid beam damage and leading to images exhibiting low CNR. Therefore, it is of interest to apply the MAP probability rule not only to ADF STEM images, but to ABF STEM images as well. In this work, the methodology of the MAP rule, which combines statistical parameter estimation theory and model-order selection, is extended to be applied to simultaneously acquired ABF and ADF STEM images. For this, an extension of the commonly used parametric models in STEM is proposed. Hereby, the effect of specimen tilt has been taken into account, since small tilts from the crystal zone axis affect, especially, ABF STEM intensities. Using simulations as well as experimental data, it is shown that the proposed methodology can be successfully used to detect light elements in the presence of heavy elements.
000893893 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000893893 536__ $$0G:(DE-HGF)VH-NG-1317$$amoreSTEM - Momentum-resolved Scanning Transmission Electron Microscopy (VH-NG-1317)$$cVH-NG-1317$$x1
000893893 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893893 7001_ $$0P:(DE-HGF)0$$aden Dekker, A. J.$$b1
000893893 7001_ $$0P:(DE-Juel1)165314$$aMüller-Caspary, K.$$b2$$ufzj
000893893 7001_ $$0P:(DE-HGF)0$$aGauquelin, N.$$b3
000893893 7001_ $$0P:(DE-HGF)0$$aVerbeeck, J.$$b4
000893893 7001_ $$0P:(DE-HGF)0$$aVan Aert, S.$$b5$$eCorresponding author
000893893 773__ $$0PERI:(DE-600)1479043-9$$a10.1016/j.ultramic.2020.113046$$gVol. 219, p. 113046 -$$p113046 -$$tUltramicroscopy$$v219$$x0304-3991$$y2020
000893893 8564_ $$uhttps://juser.fz-juelich.de/record/893893/files/OA_Fatermansetal_ULTRAM_2019_296.pdf$$yOpenAccess
000893893 909CO $$ooai:juser.fz-juelich.de:893893$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165314$$aForschungszentrum Jülich$$b2$$kFZJ
000893893 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000893893 9141_ $$y2021
000893893 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000893893 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000893893 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-03
000893893 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000893893 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000893893 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bULTRAMICROSCOPY : 2019$$d2021-02-03
000893893 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-02-03
000893893 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000893893 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000893893 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000893893 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893893 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000893893 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000893893 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000893893 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000893893 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000893893 920__ $$lyes
000893893 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000893893 980__ $$ajournal
000893893 980__ $$aVDB
000893893 980__ $$aUNRESTRICTED
000893893 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000893893 9801_ $$aFullTexts