000893894 001__ 893894
000893894 005__ 20220131120348.0
000893894 0247_ $$2doi$$a10.1103/PhysRevMaterials.4.013401
000893894 0247_ $$2ISSN$$a2475-9953
000893894 0247_ $$2ISSN$$a2476-0455
000893894 0247_ $$2Handle$$a2128/28092
000893894 0247_ $$2WOS$$aWOS:000506605500001
000893894 037__ $$aFZJ-2021-02906
000893894 041__ $$aEnglish
000893894 082__ $$a530
000893894 1001_ $$00000-0002-7586-8264$$aKoch, Julian$$b0$$eCorresponding author
000893894 245__ $$aMatching different symmetries with an atomically sharp interface: Epitaxial Ba 2 SiO 4 on Si(001)
000893894 260__ $$aCollege Park, MD$$bAPS$$c2020
000893894 3367_ $$2DRIVER$$aarticle
000893894 3367_ $$2DataCite$$aOutput Types/Journal article
000893894 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625927265_13186
000893894 3367_ $$2BibTeX$$aARTICLE
000893894 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893894 3367_ $$00$$2EndNote$$aJournal Article
000893894 520__ $$aIn this paper, we present a comprehensive investigation of the epitaxial growth of Ba2SiO4 on Si(001), a system in which neither crystal symmetry nor lattice constants match in a simple manner. In addition, it has the potential to become the first crystalline high-k gate dielectric. We combined x-ray photoelectron spectroscopy, low-energy electron diffraction, and aberration-corrected scanning transmission electron microscopy (STEM) in order to optimize the epitaxial growth by molecular beam epitaxy. Our focus was on the formation of a high quality crystalline interface. The films were grown by a co-deposition method that requires no diffusion of Si from the substrate. An annealing temperature of 400∘C turned out to be sufficient to form chemically homogeneous films. However, crystalline films require an annealing step to 670–690∘C for the formation of the epitaxial interface necessary for breaking Si-O bonds. STEM confirms that the interface is atomically sharp and that a single layer of the silicate is changed to a (2×3) structure at the interface from the (2×1.5) bulk structure. Based on our experimental results, we propose a geometrical model for the epitaxial interface. The growth of films with an understoichiometric Si flux leads to the formation of a near-surface Ba silicide that does not restrict the epitaxial silicate growth.
000893894 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000893894 536__ $$0G:(DE-HGF)VH-NG-1317$$amoreSTEM - Momentum-resolved Scanning Transmission Electron Microscopy (VH-NG-1317)$$cVH-NG-1317$$x1
000893894 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893894 7001_ $$0P:(DE-Juel1)165314$$aMüller-Caspary, Knut$$b1$$ufzj
000893894 7001_ $$00000-0003-1568-4209$$aPfnür, Herbert$$b2
000893894 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.4.013401$$gVol. 4, no. 1, p. 013401$$n1$$p013401$$tPhysical review materials$$v4$$x2475-9953$$y2020
000893894 8564_ $$uhttps://juser.fz-juelich.de/record/893894/files/Ba-Silikat_1.pdf$$yOpenAccess
000893894 8564_ $$uhttps://juser.fz-juelich.de/record/893894/files/PhysRevMaterials.4.013401.pdf$$yOpenAccess
000893894 909CO $$ooai:juser.fz-juelich.de:893894$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893894 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165314$$aForschungszentrum Jülich$$b1$$kFZJ
000893894 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000893894 9141_ $$y2021
000893894 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000893894 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000893894 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000893894 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2019$$d2021-01-27
000893894 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000893894 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000893894 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000893894 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893894 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000893894 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000893894 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000893894 920__ $$lyes
000893894 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000893894 980__ $$ajournal
000893894 980__ $$aVDB
000893894 980__ $$aUNRESTRICTED
000893894 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000893894 9801_ $$aFullTexts