001     893896
005     20220131120348.0
024 7 _ |a 10.1021/acs.jpcc.9b11732
|2 doi
024 7 _ |a 1932-7447
|2 ISSN
024 7 _ |a 1932-7455
|2 ISSN
024 7 _ |a 2128/28123
|2 Handle
024 7 _ |a WOS:000529225800047
|2 WOS
037 _ _ |a FZJ-2021-02908
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Meierhofer, Florian
|0 0000-0002-5578-7731
|b 0
245 _ _ |a Citric Acid Based Carbon Dots with Amine Type Stabilizers: pH-Specific Luminescence and Quantum Yield Characteristics
260 _ _ |a Washington, DC
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1626079562_12087
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report the synthesis and spectroscopic characteristics of two different sets of carbon dots (CDs) formed by hydrothermal reaction between citric acid and polyethylenimine (PEI) or 2,3-diaminopyridine (DAP). Although the formation of amide-based species and the presence of citrazinic acid type derivates assumed to be responsible for a blue emission is confirmed for both CDs by elemental analysis, infrared spectroscopy, and mass spectrometry, a higher abundance of sp2-hybridized nitrogen is observed for DAP-based CDs, which causes a red-shift of the n-π* absorption band relative to the one of PEI-based CDs. These CD systems possess high photoluminescence quantum yields (QY) of ∼40% and ∼48% at neutral pH, demonstrating a possible tuning of the optical properties by the amine precursor. pH-Dependent spectroscopic studies revealed a drop in QY to < 9% (pH ∼ 1) and < 21% (pH ∼ 12) for both types of CDs under acidic and basic conditions. In contrast, significant differences in the pH-dependency of the n-π* transitions are found for both CD types which are ascribed to different (de)protonation sequences of the CD-specific fluorophores and functional groups using zeta potential analysis.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
536 _ _ |a moreSTEM - Momentum-resolved Scanning Transmission Electron Microscopy (VH-NG-1317)
|0 G:(DE-HGF)VH-NG-1317
|c VH-NG-1317
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Weigert, Florian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Dissinger, Frank
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jungclaus, Jörgen
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Müller-Caspary, Knut
|0 P:(DE-Juel1)165314
|b 4
700 1 _ |a Waldvogel, Siegfried R.
|0 0000-0002-7949-9638
|b 5
700 1 _ |a Resch-Genger, Ute
|0 0000-0002-0944-1115
|b 6
|e Corresponding author
700 1 _ |a Voss, Tobias
|0 0000-0003-2580-2723
|b 7
|e Corresponding author
773 _ _ |a 10.1021/acs.jpcc.9b11732
|g Vol. 124, no. 16, p. 8894 - 8904
|0 PERI:(DE-600)2256522-X
|n 16
|p 8894 - 8904
|t The journal of physical chemistry / C
|v 124
|y 2020
|x 1932-7455
856 4 _ |u https://juser.fz-juelich.de/record/893896/files/acs.jpcc.9b11732.pdf
856 4 _ |y Published on 2020-04-02. Available in OpenAccess from 2021-04-02.
|u https://juser.fz-juelich.de/record/893896/files/jp-2019-117324%20_revised_ms%20%28no%20highlights%29%20.pdf
909 C O |o oai:juser.fz-juelich.de:893896
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165314
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 0000-0002-7949-9638
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 0000-0002-0944-1115
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 0000-0003-2580-2723
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM C : 2019
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21