TY - JOUR
AU - Mahr, Christoph
AU - Müller-Caspary, Knut
AU - Ritz, Robert
AU - Simson, Martin
AU - Grieb, Tim
AU - Schowalter, Marco
AU - Krause, Florian
AU - Lackmann, Anastasia
AU - Soltau, Heike
AU - Wittstock, Arne
AU - Rosenauer, Andreas
TI - Influence of distortions of recorded diffraction patterns on strain analysis by nano-beam electron diffraction
JO - Ultramicroscopy
VL - 196
SN - 0304-3991
CY - Amsterdam
PB - Elsevier Science
M1 - FZJ-2021-02911
SP - 74 - 82
PY - 2019
AB - Images acquired in transmission electron microscopes can be distorted for various reasons such as e.g. aberrations of the lenses of the imaging system or inaccuracies of the image recording system. This results in inaccuracies of measures obtained from the distorted images. Here we report on measurement and correction of elliptical distortions of diffraction patterns. The effect of this correction on the measurement of crystal lattice strain is investigated. We show that the effect of the distortions is smaller than the precision of the measurement in cases where the strain is obtained from shifts of diffracted discs with respect to their positions in images acquired in an unstrained reference area of the sample. This can be explained by the fact that diffraction patterns acquired in the strain free reference area of the sample are distorted in the same manner as the diffraction patterns acquired in the strained region of interest. In contrast, for samples without a strain free reference region such as nanoparticles or nanoporous structures, where we evaluate ratios of lattice plane distances along different directions, the distortions are usually not negligible. Furthermore, two techniques for the detection of diffraction disc positions are compared showing that for samples in which the crystal orientation changes over the investigated area it is more precise to detect the positions of many diffraction discs simultaneously instead of detecting each disc position independently.
LB - PUB:(DE-HGF)16
C6 - 30291992
UR - <Go to ISI:>//WOS:000451180800011
DO - DOI:10.1016/j.ultramic.2018.09.010
UR - https://juser.fz-juelich.de/record/893899
ER -