000893900 001__ 893900
000893900 005__ 20220131124551.0
000893900 0247_ $$2doi$$a10.1016/j.ultramic.2018.12.018
000893900 0247_ $$2ISSN$$a0304-3991
000893900 0247_ $$2ISSN$$a1879-2723
000893900 0247_ $$2Handle$$a2128/28058
000893900 0247_ $$2pmid$$a30660404
000893900 0247_ $$2WOS$$aWOS:000465021000013
000893900 037__ $$aFZJ-2021-02912
000893900 041__ $$aEnglish
000893900 082__ $$a570
000893900 1001_ $$0P:(DE-Juel1)165314$$aMüller-Caspary, Knut$$b0$$eCorresponding author
000893900 245__ $$aComparison of first moment STEM with conventional differential phase contrast and the dependence on electron dose
000893900 260__ $$aAmsterdam$$bElsevier Science$$c2019
000893900 3367_ $$2DRIVER$$aarticle
000893900 3367_ $$2DataCite$$aOutput Types/Journal article
000893900 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625896617_26579
000893900 3367_ $$2BibTeX$$aARTICLE
000893900 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893900 3367_ $$00$$2EndNote$$aJournal Article
000893900 520__ $$aThis study addresses the comparison of scanning transmission electron microscopy (STEM) measurements of momentum transfers using the first moment approach and the established method that uses segmented annular detectors. Using an ultrafast pixelated detector to acquire four-dimensional, momentum-resolved STEM signals, both the first moment calculation and the calculation of the differential phase contrast (DPC) signals are done for the same experimental data. In particular, we investigate the ability to correct the segment-based signal to yield a suitable approximation of the first moment for cases beyond the weak phase object approximation. It is found that the measurement of momentum transfers using segmented detectors can approach the first moment measurement as close as 0.13 h/nm in terms of a root mean square (rms) difference in 10 nm thick SrTiO3 for a detector with 16 segments. This amounts to 35% of the rms of the momentum transfers. In addition, we present a statistical analysis of the precision of first moment STEM as a function of dose. For typical experimental settings with recent hardware such as a Medipix3 Merlin camera attached to a probe-corrected STEM, we find that the precision of the measurement of momentum transfers stagnates above certain doses. This means that other instabilities such as specimen drift or scan noise have to be taken into account seriously for measurements that target, e.g., the detection of bonding effects in the charge density.
000893900 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000893900 536__ $$0G:(DE-HGF)VH-NG-1317$$amoreSTEM - Momentum-resolved Scanning Transmission Electron Microscopy (VH-NG-1317)$$cVH-NG-1317$$x1
000893900 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893900 7001_ $$0P:(DE-Juel1)178709$$aKrause, Florian$$b1
000893900 7001_ $$0P:(DE-Juel1)161387$$aWinkler, Florian$$b2
000893900 7001_ $$00000-0002-8004-4593$$aBéché, Armand$$b3
000893900 7001_ $$0P:(DE-HGF)0$$aVerbeeck, Johan$$b4
000893900 7001_ $$0P:(DE-HGF)0$$aVan Aert, Sandra$$b5
000893900 7001_ $$0P:(DE-HGF)0$$aRosenauer, Andreas$$b6
000893900 773__ $$0PERI:(DE-600)1479043-9$$a10.1016/j.ultramic.2018.12.018$$gVol. 203, p. 95 - 104$$p95 - 104$$tUltramicroscopy$$v203$$x0304-3991$$y2019
000893900 8564_ $$uhttps://juser.fz-juelich.de/record/893900/files/160213_2020_02_01.pdf$$yPublished on 2018-12-30. Available in OpenAccess from 2020-12-30.
000893900 909CO $$ooai:juser.fz-juelich.de:893900$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165314$$aForschungszentrum Jülich$$b0$$kFZJ
000893900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178709$$aForschungszentrum Jülich$$b1$$kFZJ
000893900 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000893900 9141_ $$y2021
000893900 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000893900 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000893900 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-03
000893900 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000893900 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000893900 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000893900 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000893900 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bULTRAMICROSCOPY : 2019$$d2021-02-03
000893900 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-02-03
000893900 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000893900 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000893900 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000893900 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000893900 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000893900 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000893900 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000893900 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000893900 920__ $$lyes
000893900 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000893900 980__ $$ajournal
000893900 980__ $$aVDB
000893900 980__ $$aUNRESTRICTED
000893900 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000893900 9801_ $$aFullTexts