TY - JOUR
AU - Hsu, Chun-Chih
AU - Huang, Bo-Chao
AU - Schnedler, Michael
AU - Lai, Ming-Yu
AU - Wang, Yuh-Lin
AU - Dunin-Borkowski, Rafal E.
AU - Chang, Chia-Seng
AU - Lee, Ting-Kuo
AU - Ebert, Philipp
AU - Chiu, Ya-Ping
TI - Atomically-resolved interlayer charge ordering and its interplay with superconductivity in YBa2Cu3O6.81
JO - Nature Communications
VL - 12
IS - 1
SN - 2041-1723
CY - [London]
PB - Nature Publishing Group UK
M1 - FZJ-2021-02914
SP - 3893
PY - 2021
AB - High-temperature superconductive (SC) cuprates exhibit not only a SC phase, but also competing orders, suppressing superconductivity. Charge order (CO) has been recognized as an important competing order, but its microscopic spatial interplay with SC phase as well as the interlayer coupling in CO and SC phases remain elusive, despite being essential for understanding the physical mechanisms of competing orders and hence superconductivity. Here we report the achievement of direct real-space imaging with atomic-scale resolution of cryogenically cleaved YBa2Cu3O6.81 using cross-sectional scanning tunneling microscopy/spectroscopy. CO nanodomains are found embedded in the SC phase with a proximity-like boundary region characterized by mutual suppression of CO and superconductivity. Furthermore, SC coherence as well as CO occur on both CuO chain and plane layers, revealing carrier transport and density of states mixing between layers. The CO antiphase correlation along the c direction suggests a dominance of Coulomb repulsion over Josephson tunneling between adjacent layers.
LB - PUB:(DE-HGF)16
C6 - 34162864
UR - <Go to ISI:>//WOS:000668766900004
DO - DOI:10.1038/s41467-021-24003-0
UR - https://juser.fz-juelich.de/record/893902
ER -