000893906 001__ 893906
000893906 005__ 20210810182033.0
000893906 0247_ $$2doi$$a10.1002/chem.202003804
000893906 0247_ $$2ISSN$$a0947-6539
000893906 0247_ $$2ISSN$$a1521-3765
000893906 0247_ $$2Handle$$a2128/28096
000893906 0247_ $$2altmetric$$aaltmetric:96098618
000893906 0247_ $$2pmid$$a32959929
000893906 0247_ $$2WOS$$aWOS:000598647300001
000893906 037__ $$aFZJ-2021-02918
000893906 082__ $$a540
000893906 1001_ $$0P:(DE-HGF)0$$aMeer, Selina Beatrice$$b0
000893906 245__ $$aControlling the Surface Functionalization of Ultrasmall Gold Nanoparticles by Sequence‐Defined Macromolecules
000893906 260__ $$aWeinheim$$bWiley-VCH$$c2021
000893906 3367_ $$2DRIVER$$aarticle
000893906 3367_ $$2DataCite$$aOutput Types/Journal article
000893906 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625928343_13186
000893906 3367_ $$2BibTeX$$aARTICLE
000893906 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893906 3367_ $$00$$2EndNote$$aJournal Article
000893906 520__ $$aUltrasmall gold nanoparticles (diameter about 2 nm) were surface-functionalized with cysteine-carrying precision macromolecules. These consisted of sequence-defined oligo(amidoamine)s (OAAs) with either two or six cysteine molecules for binding to the gold surface and either with or without a PEG chain (3400 Da). They were characterized by 1H NMR spectroscopy, 1H NMR diffusion-ordered spectroscopy (DOSY), small-angle X-ray scattering (SAXS), and high-resolution transmission electron microscopy. The number of precision macromolecules per nanoparticle was determined after fluorescent labeling by UV spectroscopy and also by quantitative 1H NMR spectroscopy. Each nanoparticle carried between 40 and 100 OAA ligands, depending on the number of cysteine units per OAA. The footprint of each ligand was about 0.074 nm2 per cysteine molecule. OAAs are well suited to stabilize ultrasmall gold nanoparticles by selective surface conjugation and can be used to selectively cover their surface. The presence of the PEG chain considerably increased the hydrodynamic diameter of both dissolved macromolecules and macromolecule-conjugated gold nanoparticles.
000893906 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000893906 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893906 7001_ $$0P:(DE-HGF)0$$aSeiler, Theresa$$b1
000893906 7001_ $$0P:(DE-HGF)0$$aBuchmann, Christin$$b2
000893906 7001_ $$0P:(DE-HGF)0$$aPartalidou, Georgia$$b3
000893906 7001_ $$0P:(DE-HGF)0$$aBoden, Sophia$$b4
000893906 7001_ $$0P:(DE-HGF)0$$aLoza, Kateryna$$b5
000893906 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b6
000893906 7001_ $$0P:(DE-HGF)0$$aLinders, Jürgen$$b7
000893906 7001_ $$0P:(DE-HGF)0$$aPrymak, Oleg$$b8
000893906 7001_ $$0P:(DE-HGF)0$$aOliveira, Cristiano L. P.$$b9
000893906 7001_ $$0P:(DE-HGF)0$$aHartmann, Laura$$b10$$eCorresponding author
000893906 7001_ $$00000-0002-1641-7068$$aEpple, Matthias$$b11
000893906 773__ $$0PERI:(DE-600)1478547-X$$a10.1002/chem.202003804$$gVol. 27, no. 4, p. 1451 - 1464$$n4$$p1451 - 1464$$tChemistry - a European journal$$v27$$x1521-3765$$y2021
000893906 8564_ $$uhttps://juser.fz-juelich.de/record/893906/files/chem.202003804.pdf$$yOpenAccess
000893906 909CO $$ooai:juser.fz-juelich.de:893906$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b6$$kFZJ
000893906 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000893906 9141_ $$y2021
000893906 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000893906 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000893906 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000893906 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000893906 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-02-02
000893906 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-02$$wger
000893906 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000893906 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2021-02-02
000893906 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000893906 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000893906 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893906 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000893906 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000893906 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM-EUR J : 2019$$d2021-02-02
000893906 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000893906 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000893906 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000893906 920__ $$lyes
000893906 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000893906 980__ $$ajournal
000893906 980__ $$aVDB
000893906 980__ $$aUNRESTRICTED
000893906 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000893906 9801_ $$aFullTexts