001     893906
005     20210810182033.0
024 7 _ |a 10.1002/chem.202003804
|2 doi
024 7 _ |a 0947-6539
|2 ISSN
024 7 _ |a 1521-3765
|2 ISSN
024 7 _ |a 2128/28096
|2 Handle
024 7 _ |a altmetric:96098618
|2 altmetric
024 7 _ |a 32959929
|2 pmid
024 7 _ |a WOS:000598647300001
|2 WOS
037 _ _ |a FZJ-2021-02918
082 _ _ |a 540
100 1 _ |a Meer, Selina Beatrice
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Controlling the Surface Functionalization of Ultrasmall Gold Nanoparticles by Sequence‐Defined Macromolecules
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1625928343_13186
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ultrasmall gold nanoparticles (diameter about 2 nm) were surface-functionalized with cysteine-carrying precision macromolecules. These consisted of sequence-defined oligo(amidoamine)s (OAAs) with either two or six cysteine molecules for binding to the gold surface and either with or without a PEG chain (3400 Da). They were characterized by 1H NMR spectroscopy, 1H NMR diffusion-ordered spectroscopy (DOSY), small-angle X-ray scattering (SAXS), and high-resolution transmission electron microscopy. The number of precision macromolecules per nanoparticle was determined after fluorescent labeling by UV spectroscopy and also by quantitative 1H NMR spectroscopy. Each nanoparticle carried between 40 and 100 OAA ligands, depending on the number of cysteine units per OAA. The footprint of each ligand was about 0.074 nm2 per cysteine molecule. OAAs are well suited to stabilize ultrasmall gold nanoparticles by selective surface conjugation and can be used to selectively cover their surface. The presence of the PEG chain considerably increased the hydrodynamic diameter of both dissolved macromolecules and macromolecule-conjugated gold nanoparticles.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Seiler, Theresa
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Buchmann, Christin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Partalidou, Georgia
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Boden, Sophia
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Loza, Kateryna
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Heggen, Marc
|0 P:(DE-Juel1)130695
|b 6
700 1 _ |a Linders, Jürgen
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Prymak, Oleg
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Oliveira, Cristiano L. P.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Hartmann, Laura
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
700 1 _ |a Epple, Matthias
|0 0000-0002-1641-7068
|b 11
773 _ _ |a 10.1002/chem.202003804
|g Vol. 27, no. 4, p. 1451 - 1464
|0 PERI:(DE-600)1478547-X
|n 4
|p 1451 - 1464
|t Chemistry - a European journal
|v 27
|y 2021
|x 1521-3765
856 4 _ |u https://juser.fz-juelich.de/record/893906/files/chem.202003804.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:893906
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130695
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-02
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2021-02-02
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM-EUR J : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21