Home > Publications database > Controlling the Surface Functionalization of Ultrasmall Gold Nanoparticles by Sequence‐Defined Macromolecules > print |
001 | 893906 | ||
005 | 20210810182033.0 | ||
024 | 7 | _ | |a 10.1002/chem.202003804 |2 doi |
024 | 7 | _ | |a 0947-6539 |2 ISSN |
024 | 7 | _ | |a 1521-3765 |2 ISSN |
024 | 7 | _ | |a 2128/28096 |2 Handle |
024 | 7 | _ | |a altmetric:96098618 |2 altmetric |
024 | 7 | _ | |a 32959929 |2 pmid |
024 | 7 | _ | |a WOS:000598647300001 |2 WOS |
037 | _ | _ | |a FZJ-2021-02918 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Meer, Selina Beatrice |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Controlling the Surface Functionalization of Ultrasmall Gold Nanoparticles by Sequence‐Defined Macromolecules |
260 | _ | _ | |a Weinheim |c 2021 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1625928343_13186 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Ultrasmall gold nanoparticles (diameter about 2 nm) were surface-functionalized with cysteine-carrying precision macromolecules. These consisted of sequence-defined oligo(amidoamine)s (OAAs) with either two or six cysteine molecules for binding to the gold surface and either with or without a PEG chain (3400 Da). They were characterized by 1H NMR spectroscopy, 1H NMR diffusion-ordered spectroscopy (DOSY), small-angle X-ray scattering (SAXS), and high-resolution transmission electron microscopy. The number of precision macromolecules per nanoparticle was determined after fluorescent labeling by UV spectroscopy and also by quantitative 1H NMR spectroscopy. Each nanoparticle carried between 40 and 100 OAA ligands, depending on the number of cysteine units per OAA. The footprint of each ligand was about 0.074 nm2 per cysteine molecule. OAAs are well suited to stabilize ultrasmall gold nanoparticles by selective surface conjugation and can be used to selectively cover their surface. The presence of the PEG chain considerably increased the hydrodynamic diameter of both dissolved macromolecules and macromolecule-conjugated gold nanoparticles. |
536 | _ | _ | |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535) |0 G:(DE-HGF)POF4-5351 |c POF4-535 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Seiler, Theresa |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Buchmann, Christin |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Partalidou, Georgia |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Boden, Sophia |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Loza, Kateryna |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Heggen, Marc |0 P:(DE-Juel1)130695 |b 6 |
700 | 1 | _ | |a Linders, Jürgen |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Prymak, Oleg |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Oliveira, Cristiano L. P. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Hartmann, Laura |0 P:(DE-HGF)0 |b 10 |e Corresponding author |
700 | 1 | _ | |a Epple, Matthias |0 0000-0002-1641-7068 |b 11 |
773 | _ | _ | |a 10.1002/chem.202003804 |g Vol. 27, no. 4, p. 1451 - 1464 |0 PERI:(DE-600)1478547-X |n 4 |p 1451 - 1464 |t Chemistry - a European journal |v 27 |y 2021 |x 1521-3765 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/893906/files/chem.202003804.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:893906 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)130695 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5351 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-02-02 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2021-02-02 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-02-02 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1210 |2 StatID |b Index Chemicus |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-02 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-02-02 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-02 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CHEM-EUR J : 2019 |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-02 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-02-02 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-02 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|