000893907 001__ 893907
000893907 005__ 20210810182023.0
000893907 0247_ $$2doi$$a10.1002/aenm.202003507
000893907 0247_ $$2ISSN$$a1614-6832
000893907 0247_ $$2ISSN$$a1614-6840
000893907 0247_ $$2Handle$$a2128/28242
000893907 0247_ $$2altmetric$$aaltmetric:96342362
000893907 0247_ $$2WOS$$aWOS:000599600700001
000893907 037__ $$aFZJ-2021-02919
000893907 041__ $$aEnglish
000893907 082__ $$a050
000893907 1001_ $$00000-0002-2948-0170$$aLiang, Zhifu$$b0
000893907 245__ $$aAtomically dispersed Fe in a C 2 N Based Catalyst as a Sulfur Host for Efficient Lithium–Sulfur Batteries
000893907 260__ $$aWeinheim$$bWiley-VCH$$c2021
000893907 3367_ $$2DRIVER$$aarticle
000893907 3367_ $$2DataCite$$aOutput Types/Journal article
000893907 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1626763940_8199
000893907 3367_ $$2BibTeX$$aARTICLE
000893907 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893907 3367_ $$00$$2EndNote$$aJournal Article
000893907 520__ $$aLithium–sulfur batteries (LSBs) are considered to be one of the most promising next generation energy storage systems due to their high energy density and low material cost. However, there are still some challenges for the commercialization of LSBs, such as the sluggish redox reaction kinetics and the shuttle effect of lithium polysulfides (LiPS). Here a 2D layered organic material, C2N, loaded with atomically dispersed iron as an effective sulfur host in LSBs is reported. X-ray absorption fine spectroscopy and density functional theory calculations prove the structure of the atomically dispersed Fe/C2N catalyst. As a result, Fe/C2N-based cathodes demonstrate significantly improved rate performance and long-term cycling stability. Fe/C2N-based cathodes display initial capacities up to 1540 mAh g−1 at 0.1 C and 678.7 mAh g−1 at 5 C, while retaining 496.5 mAh g−1 after 2600 cycles at 3 C with a decay rate as low as 0.013% per cycle. Even at a high sulfur loading of 3 mg cm−2, they deliver remarkable specific capacity retention of 587 mAh g−1 after 500 cycles at 1 C. This work provides a rational structural design strategy for the development of high-performance cathodes based on atomically dispersed catalysts for LSBs.
000893907 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000893907 536__ $$0G:(EU-Grant)823717$$aESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)$$c823717$$fH2020-INFRAIA-2018-1$$x1
000893907 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893907 7001_ $$0P:(DE-HGF)0$$aYang, Dawei$$b1
000893907 7001_ $$0P:(DE-Juel1)179016$$aTang, Pengyi$$b2
000893907 7001_ $$0P:(DE-HGF)0$$aZhang, Chaoqi$$b3
000893907 7001_ $$00000-0001-5981-6168$$aJacas Biendicho, Jordi$$b4
000893907 7001_ $$0P:(DE-Juel1)128754$$aZhang, Yi$$b5
000893907 7001_ $$00000-0002-7447-9582$$aLlorca, Jordi$$b6
000893907 7001_ $$0P:(DE-Juel1)186739$$aWang, Xiang$$b7
000893907 7001_ $$0P:(DE-HGF)0$$aLi, Junshan$$b8
000893907 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b9
000893907 7001_ $$00000-0002-9721-5037$$aDavid, Jeremy$$b10
000893907 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b11
000893907 7001_ $$0P:(DE-HGF)0$$aZhou, Yingtang$$b12
000893907 7001_ $$00000-0002-4981-4633$$aMorante, Joan Ramon$$b13
000893907 7001_ $$00000-0002-7533-3251$$aCabot, Andreu$$b14
000893907 7001_ $$00000-0002-0695-1726$$aArbiol, Jordi$$b15$$eCorresponding author
000893907 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202003507$$gVol. 11, no. 5, p. 2003507 -$$n5$$p2003507 -$$tAdvanced energy materials$$v11$$x1614-6840$$y2021
000893907 8564_ $$uhttps://juser.fz-juelich.de/record/893907/files/aenm.202003507.pdf
000893907 8564_ $$uhttps://juser.fz-juelich.de/record/893907/files/2021%20Atomically%20dispersed%20Fe%20in%20C2N%20based%20Catalyst.pdf$$yPublished on 2020-12-18. Available in OpenAccess from 2021-12-18.
000893907 909CO $$ooai:juser.fz-juelich.de:893907$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000893907 9101_ $$0I:(DE-HGF)0$$60000-0002-2948-0170$$aExternal Institute$$b0$$kExtern
000893907 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179016$$aForschungszentrum Jülich$$b2$$kFZJ
000893907 9101_ $$0I:(DE-HGF)0$$60000-0001-5981-6168$$aExternal Institute$$b4$$kExtern
000893907 9101_ $$0I:(DE-HGF)0$$60000-0002-7447-9582$$aExternal Institute$$b6$$kExtern
000893907 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186739$$aForschungszentrum Jülich$$b7$$kFZJ
000893907 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b9$$kFZJ
000893907 9101_ $$0I:(DE-HGF)0$$60000-0002-9721-5037$$aExternal Institute$$b10$$kExtern
000893907 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b11$$kFZJ
000893907 9101_ $$0I:(DE-HGF)0$$60000-0002-4981-4633$$aExternal Institute$$b13$$kExtern
000893907 9101_ $$0I:(DE-HGF)0$$60000-0002-7533-3251$$aExternal Institute$$b14$$kExtern
000893907 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000893907 9141_ $$y2021
000893907 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000893907 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000893907 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000893907 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000893907 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000893907 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2019$$d2021-01-30
000893907 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000893907 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000893907 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2019$$d2021-01-30
000893907 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000893907 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000893907 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000893907 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000893907 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000893907 920__ $$lyes
000893907 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000893907 980__ $$ajournal
000893907 980__ $$aVDB
000893907 980__ $$aUNRESTRICTED
000893907 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000893907 9801_ $$aFullTexts