Hauptseite > Publikationsdatenbank > Atomically dispersed Fe in a C 2 N Based Catalyst as a Sulfur Host for Efficient Lithium–Sulfur Batteries > print |
001 | 893907 | ||
005 | 20210810182023.0 | ||
024 | 7 | _ | |a 10.1002/aenm.202003507 |2 doi |
024 | 7 | _ | |a 1614-6832 |2 ISSN |
024 | 7 | _ | |a 1614-6840 |2 ISSN |
024 | 7 | _ | |a 2128/28242 |2 Handle |
024 | 7 | _ | |a altmetric:96342362 |2 altmetric |
024 | 7 | _ | |a WOS:000599600700001 |2 WOS |
037 | _ | _ | |a FZJ-2021-02919 |
041 | _ | _ | |a English |
082 | _ | _ | |a 050 |
100 | 1 | _ | |a Liang, Zhifu |0 0000-0002-2948-0170 |b 0 |
245 | _ | _ | |a Atomically dispersed Fe in a C 2 N Based Catalyst as a Sulfur Host for Efficient Lithium–Sulfur Batteries |
260 | _ | _ | |a Weinheim |c 2021 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1626763940_8199 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Lithium–sulfur batteries (LSBs) are considered to be one of the most promising next generation energy storage systems due to their high energy density and low material cost. However, there are still some challenges for the commercialization of LSBs, such as the sluggish redox reaction kinetics and the shuttle effect of lithium polysulfides (LiPS). Here a 2D layered organic material, C2N, loaded with atomically dispersed iron as an effective sulfur host in LSBs is reported. X-ray absorption fine spectroscopy and density functional theory calculations prove the structure of the atomically dispersed Fe/C2N catalyst. As a result, Fe/C2N-based cathodes demonstrate significantly improved rate performance and long-term cycling stability. Fe/C2N-based cathodes display initial capacities up to 1540 mAh g−1 at 0.1 C and 678.7 mAh g−1 at 5 C, while retaining 496.5 mAh g−1 after 2600 cycles at 3 C with a decay rate as low as 0.013% per cycle. Even at a high sulfur loading of 3 mg cm−2, they deliver remarkable specific capacity retention of 587 mAh g−1 after 500 cycles at 1 C. This work provides a rational structural design strategy for the development of high-performance cathodes based on atomically dispersed catalysts for LSBs. |
536 | _ | _ | |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535) |0 G:(DE-HGF)POF4-5351 |c POF4-535 |f POF IV |x 0 |
536 | _ | _ | |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717) |0 G:(EU-Grant)823717 |c 823717 |f H2020-INFRAIA-2018-1 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Yang, Dawei |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Tang, Pengyi |0 P:(DE-Juel1)179016 |b 2 |
700 | 1 | _ | |a Zhang, Chaoqi |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Jacas Biendicho, Jordi |0 0000-0001-5981-6168 |b 4 |
700 | 1 | _ | |a Zhang, Yi |0 P:(DE-Juel1)128754 |b 5 |
700 | 1 | _ | |a Llorca, Jordi |0 0000-0002-7447-9582 |b 6 |
700 | 1 | _ | |a Wang, Xiang |0 P:(DE-Juel1)186739 |b 7 |
700 | 1 | _ | |a Li, Junshan |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Heggen, Marc |0 P:(DE-Juel1)130695 |b 9 |
700 | 1 | _ | |a David, Jeremy |0 0000-0002-9721-5037 |b 10 |
700 | 1 | _ | |a Dunin-Borkowski, Rafal E. |0 P:(DE-Juel1)144121 |b 11 |
700 | 1 | _ | |a Zhou, Yingtang |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Morante, Joan Ramon |0 0000-0002-4981-4633 |b 13 |
700 | 1 | _ | |a Cabot, Andreu |0 0000-0002-7533-3251 |b 14 |
700 | 1 | _ | |a Arbiol, Jordi |0 0000-0002-0695-1726 |b 15 |e Corresponding author |
773 | _ | _ | |a 10.1002/aenm.202003507 |g Vol. 11, no. 5, p. 2003507 - |0 PERI:(DE-600)2594556-7 |n 5 |p 2003507 - |t Advanced energy materials |v 11 |y 2021 |x 1614-6840 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/893907/files/aenm.202003507.pdf |
856 | 4 | _ | |y Published on 2020-12-18. Available in OpenAccess from 2021-12-18. |u https://juser.fz-juelich.de/record/893907/files/2021%20Atomically%20dispersed%20Fe%20in%20C2N%20based%20Catalyst.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:893907 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 0000-0002-2948-0170 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)179016 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 0000-0001-5981-6168 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 0000-0002-7447-9582 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)186739 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)130695 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 10 |6 0000-0002-9721-5037 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)144121 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 13 |6 0000-0002-4981-4633 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 14 |6 0000-0002-7533-3251 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5351 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-30 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV ENERGY MATER : 2019 |d 2021-01-30 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-30 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
915 | _ | _ | |a IF >= 25 |0 StatID:(DE-HGF)9925 |2 StatID |b ADV ENERGY MATER : 2019 |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-30 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-30 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|