001     893907
005     20210810182023.0
024 7 _ |a 10.1002/aenm.202003507
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a 2128/28242
|2 Handle
024 7 _ |a altmetric:96342362
|2 altmetric
024 7 _ |a WOS:000599600700001
|2 WOS
037 _ _ |a FZJ-2021-02919
041 _ _ |a English
082 _ _ |a 050
100 1 _ |a Liang, Zhifu
|0 0000-0002-2948-0170
|b 0
245 _ _ |a Atomically dispersed Fe in a C 2 N Based Catalyst as a Sulfur Host for Efficient Lithium–Sulfur Batteries
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1626763940_8199
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Lithium–sulfur batteries (LSBs) are considered to be one of the most promising next generation energy storage systems due to their high energy density and low material cost. However, there are still some challenges for the commercialization of LSBs, such as the sluggish redox reaction kinetics and the shuttle effect of lithium polysulfides (LiPS). Here a 2D layered organic material, C2N, loaded with atomically dispersed iron as an effective sulfur host in LSBs is reported. X-ray absorption fine spectroscopy and density functional theory calculations prove the structure of the atomically dispersed Fe/C2N catalyst. As a result, Fe/C2N-based cathodes demonstrate significantly improved rate performance and long-term cycling stability. Fe/C2N-based cathodes display initial capacities up to 1540 mAh g−1 at 0.1 C and 678.7 mAh g−1 at 5 C, while retaining 496.5 mAh g−1 after 2600 cycles at 3 C with a decay rate as low as 0.013% per cycle. Even at a high sulfur loading of 3 mg cm−2, they deliver remarkable specific capacity retention of 587 mAh g−1 after 500 cycles at 1 C. This work provides a rational structural design strategy for the development of high-performance cathodes based on atomically dispersed catalysts for LSBs.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
536 _ _ |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)
|0 G:(EU-Grant)823717
|c 823717
|f H2020-INFRAIA-2018-1
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Yang, Dawei
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Tang, Pengyi
|0 P:(DE-Juel1)179016
|b 2
700 1 _ |a Zhang, Chaoqi
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Jacas Biendicho, Jordi
|0 0000-0001-5981-6168
|b 4
700 1 _ |a Zhang, Yi
|0 P:(DE-Juel1)128754
|b 5
700 1 _ |a Llorca, Jordi
|0 0000-0002-7447-9582
|b 6
700 1 _ |a Wang, Xiang
|0 P:(DE-Juel1)186739
|b 7
700 1 _ |a Li, Junshan
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Heggen, Marc
|0 P:(DE-Juel1)130695
|b 9
700 1 _ |a David, Jeremy
|0 0000-0002-9721-5037
|b 10
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 11
700 1 _ |a Zhou, Yingtang
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Morante, Joan Ramon
|0 0000-0002-4981-4633
|b 13
700 1 _ |a Cabot, Andreu
|0 0000-0002-7533-3251
|b 14
700 1 _ |a Arbiol, Jordi
|0 0000-0002-0695-1726
|b 15
|e Corresponding author
773 _ _ |a 10.1002/aenm.202003507
|g Vol. 11, no. 5, p. 2003507 -
|0 PERI:(DE-600)2594556-7
|n 5
|p 2003507 -
|t Advanced energy materials
|v 11
|y 2021
|x 1614-6840
856 4 _ |u https://juser.fz-juelich.de/record/893907/files/aenm.202003507.pdf
856 4 _ |y Published on 2020-12-18. Available in OpenAccess from 2021-12-18.
|u https://juser.fz-juelich.de/record/893907/files/2021%20Atomically%20dispersed%20Fe%20in%20C2N%20based%20Catalyst.pdf
909 C O |o oai:juser.fz-juelich.de:893907
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0002-2948-0170
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179016
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 0000-0001-5981-6168
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 0000-0002-7447-9582
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)186739
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130695
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 0000-0002-9721-5037
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)144121
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 13
|6 0000-0002-4981-4633
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 0000-0002-7533-3251
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2019
|d 2021-01-30
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV ENERGY MATER : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21