001     893909
005     20210914122704.0
024 7 _ |a 10.1016/j.apcata.2020.117984
|2 doi
024 7 _ |a 0926-860X
|2 ISSN
024 7 _ |a 1873-3875
|2 ISSN
024 7 _ |a 2128/28590
|2 Handle
024 7 _ |a WOS:000672248500006
|2 WOS
037 _ _ |a FZJ-2021-02921
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Nezhad, Parastoo Delir Kheyrollahi
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Mechanistic in situ insights into the formation, structural and catalytic aspects of the La2NiO4 intermediate phase in the dry reforming of methane over Ni-based perovskite catalysts
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1630488865_6021
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Bitte Post-print ergänzen
520 _ _ |a Parastoo Delir Kheyrollahi Nezhad; Maged Behkeet; Nicolas Bonmassar; Lukas Schlicker; Albert Gili; Franz Kamutzki; Andrew Doran; Yuanxu Gao; Marc Heggen; Sabine Schwarz; Johannes Bernardi; Bernhard Klötzer; Aligholi Niaei; Ali Farzi; and Simon Penner “Mechanistic In Situ Insights into the Formation, Structural and Catalytic Aspects of the La2NiO4 Intermediate Phase in the Dry Reforming of Methane over Ni-based Perovskite Catalysts”, Applied Catalysis A, Volume 612, (2021), 117984, https://doi.org/10.1016/j.apcata.2020.117984Abstract:We focus on the stability and bulk/surface structural properties of the Ruddlesden-Popper phase La2NiO4 and their consequences for dry reforming of methane (DRM) activity. Fuelled by the appearance as a crucial intermediate during in situ decomposition of highly DRM-active LaNiO3 perovskite structures, we show that La2NiO4 can be equally in situ decomposed into a Ni/La2O3 phase offering CO2 capture and release necessary for DRM activity, albeit at much higher temperatures compared to LaNiO3. Decomposition in hydrogen also leads to an active Ni/La2O3 phase. In situ X-ray diffraction during DRM operation reveals considerable coking and encapsulation of exsolved Ni, yielding much smaller Ni crystallites compared to on LaNiO3, where coking is virtually absent. Generalizing the importance of intermediate Ruddlesden-Popper phases, the in situ decomposition of La-based perovskite structures yields several obstacles due to the high stability of both the parent perovskite and the Ruddlesden-Popper structures and the occurrence of parasitic structures.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bekheet, Maged F.
|0 0000-0003-1778-0288
|b 1
700 1 _ |a Bonmassar, Nicolas
|0 0000-0001-8105-8404
|b 2
700 1 _ |a Schlicker, Lukas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gili, Albert
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kamutzki, Franz
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gurlo, Aleksander
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Doran, Andrew
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Gao, Yuanxu
|0 P:(DE-Juel1)174552
|b 8
700 1 _ |a Heggen, Marc
|0 P:(DE-Juel1)130695
|b 9
700 1 _ |a Schwarz, Sabine
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Bernardi, Johannes
|0 0000-0002-4626-9246
|b 11
700 1 _ |a Niaei, Aligholi
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Farzi, Ali
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Klötzer, Bernhard
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Penner, Simon
|0 P:(DE-HGF)0
|b 15
|e Corresponding author
773 _ _ |a 10.1016/j.apcata.2020.117984
|g Vol. 612, p. 117984 -
|0 PERI:(DE-600)2024707-2
|p 117984 -
|t Applied catalysis / A
|v 612
|y 2021
|x 0926-860X
856 4 _ |u https://juser.fz-juelich.de/record/893909/files/2021%20Mechanistic%20In%20Situ%20Insights%20into%20the%20Formation.pdf
|y Published on 2021-02-25. Available in OpenAccess from 2023-02-25.
909 C O |o oai:juser.fz-juelich.de:893909
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 0000-0003-1778-0288
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 0000-0001-8105-8404
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130695
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 0000-0002-4626-9246
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2021-01-30
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b APPL CATAL A-GEN : 2019
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL CATAL A-GEN : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21