000893911 001__ 893911
000893911 005__ 20210810182040.0
000893911 0247_ $$2doi$$a10.1021/acs.jpcc.1c02260
000893911 0247_ $$2ISSN$$a1932-7447
000893911 0247_ $$2ISSN$$a1932-7455
000893911 0247_ $$2Handle$$a2128/28331
000893911 0247_ $$2WOS$$aWOS:000651787500021
000893911 037__ $$aFZJ-2021-02923
000893911 041__ $$aEnglish
000893911 082__ $$a530
000893911 1001_ $$00000-0002-8742-9648$$aKöwitsch, Nicolas$$b0
000893911 245__ $$aUnprecedented Catalytic Activity and Selectivity in Methanol Steam Reforming by Reactive Transformation of Intermetallic In–Pt Compounds
000893911 260__ $$aWashington, DC$$bSoc.$$c2021
000893911 3367_ $$2DRIVER$$aarticle
000893911 3367_ $$2DataCite$$aOutput Types/Journal article
000893911 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1627289818_11206
000893911 3367_ $$2BibTeX$$aARTICLE
000893911 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893911 3367_ $$00$$2EndNote$$aJournal Article
000893911 520__ $$aHydrogen storage in the form of small molecules and subsequent release are foreseen to play a fundamental role in future energy systems or carbon cycles. Methanol is an ideal hydrogen carrier due to the high H/C ratio, the lack of C–C bonds, and being liquid under ambient conditions. Methanol steam reforming is an advantageous reaction for the release of the chemically bound hydrogen. Pd- or Pt-based intermetallic compounds have shown to be CO2-selective and long-term stable catalytic materials. However, an intrinsic understanding of the underlying processes is still lacking. In this study, we show that the redox activity in the In–Pt system can be steered by gas-phase changes and leads to highly active catalytic materials at 300 °C [1500 mol (H2)/(mol (Pt) × h)] with an excellent CO2 selectivity of 99.5%, thus clearly outperforming previous materials. Reactive transformations between In2Pt, In3Pt2, and In2O3 have been identified to cause the high selectivity. Redox activity of intermetallic compounds as part of the catalytic cycle was previously unknown and adds an understanding to the concept of different adsorption sites.
000893911 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000893911 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893911 7001_ $$0P:(DE-HGF)0$$aThoni, Lukas$$b1
000893911 7001_ $$0P:(DE-HGF)0$$aKlemmed, Benjamin$$b2
000893911 7001_ $$0P:(DE-HGF)0$$aBenad, Albrecht$$b3
000893911 7001_ $$0P:(DE-Juel1)151296$$aPaciok, Paul$$b4
000893911 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b5
000893911 7001_ $$00000-0001-9926-6279$$aEychmüller, Alexander$$b6
000893911 7001_ $$00000-0002-2914-0600$$aArmbrüster, Marc$$b7$$eCorresponding author
000893911 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.1c02260$$gVol. 125, no. 18, p. 9809 - 9817$$n18$$p9809 - 9817$$tThe journal of physical chemistry <Washington, DC> / C$$v125$$x1932-7455$$y2021
000893911 8564_ $$uhttps://juser.fz-juelich.de/record/893911/files/acs.jpcc.1c02260.pdf
000893911 8564_ $$uhttps://juser.fz-juelich.de/record/893911/files/Unprecedented%20Catalytic%20Activity%20and%20Selectivity.pdf$$yPublished on 2021-05-04. Available in OpenAccess from 2022-05-04.
000893911 909CO $$ooai:juser.fz-juelich.de:893911$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151296$$aForschungszentrum Jülich$$b4$$kFZJ
000893911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b5$$kFZJ
000893911 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000893911 9141_ $$y2021
000893911 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000893911 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000893911 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000893911 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2019$$d2021-02-02
000893911 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000893911 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000893911 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000893911 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000893911 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000893911 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000893911 920__ $$lyes
000893911 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000893911 980__ $$ajournal
000893911 980__ $$aVDB
000893911 980__ $$aUNRESTRICTED
000893911 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000893911 9801_ $$aFullTexts