000893912 001__ 893912
000893912 005__ 20210810182025.0
000893912 0247_ $$2doi$$a10.1021/acs.jpcb.1c02512
000893912 0247_ $$2ISSN$$a1089-5647
000893912 0247_ $$2ISSN$$a1520-5207
000893912 0247_ $$2ISSN$$a1520-6106
000893912 0247_ $$2Handle$$a2128/28212
000893912 0247_ $$2altmetric$$aaltmetric:106376112
000893912 0247_ $$2pmid$$a34029093
000893912 0247_ $$2WOS$$aWOS:000661116600019
000893912 037__ $$aFZJ-2021-02924
000893912 041__ $$aEnglish
000893912 082__ $$a530
000893912 1001_ $$0P:(DE-HGF)0$$aWetzel, Oliver$$b0
000893912 245__ $$aMetal–Ligand Interface and Internal Structure of Ultrasmall Silver Nanoparticles (2 nm)
000893912 260__ $$aWashington, DC$$bSoc.$$c2021
000893912 3367_ $$2DRIVER$$aarticle
000893912 3367_ $$2DataCite$$aOutput Types/Journal article
000893912 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1626670851_12786
000893912 3367_ $$2BibTeX$$aARTICLE
000893912 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893912 3367_ $$00$$2EndNote$$aJournal Article
000893912 520__ $$aUltrasmall silver nanoparticles were prepared by reduction with NaBH4 and surface-terminated with glutathione (GSH). The particles had a solid core diameter of 2 nm as shown by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). NMR-DOSY gave a hydrodynamic diameter of 2 to 2.8 nm. X-ray photoelectron spectroscopy (XPS) showed that silver is bound to the thiol group of the central cysteine in glutathione under partial oxidation to silver(+I). In turn, the thiol group is deprotonated to thiolate. X-ray powder diffraction (XRD) together with Rietveld refinement confirmed a twinned (polycrystalline) fcc structure of ultrasmall silver nanoparticles with a lattice compression of about 0.9% compared to bulk silver metal. By NMR spectroscopy, the interaction between the glutathione ligand and the silver surface was analyzed, also with 13C-labeled glutathione. The adsorbed glutathione is fully intact and binds to the silver surface via cysteine. In situ1H NMR spectroscopy up to 85 °C in dispersion showed that the glutathione ligand did not detach from the surface of the silver nanoparticle, i.e. the silver–sulfur bond is remarkably strong. The ultrasmall nanoparticles had a higher cytotoxicity than bigger particles in in vitro cell culture with HeLa cells with a cytotoxic concentration of about 1 μg mL–1 after 24 h incubation. The overall stoichiometry of the nanoparticles was about Ag∼250GSH∼155.
000893912 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000893912 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893912 7001_ $$0P:(DE-HGF)0$$aHosseini, Shabnam$$b1
000893912 7001_ $$0P:(DE-HGF)0$$aLoza, Kateryna$$b2
000893912 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b3
000893912 7001_ $$0P:(DE-HGF)0$$aPrymak, Oleg$$b4
000893912 7001_ $$0P:(DE-HGF)0$$aBayer, Peter$$b5
000893912 7001_ $$0P:(DE-HGF)0$$aBeuck, Christine$$b6
000893912 7001_ $$0P:(DE-HGF)0$$aSchaller, Torsten$$b7
000893912 7001_ $$0P:(DE-HGF)0$$aNiemeyer, Felix$$b8
000893912 7001_ $$0P:(DE-HGF)0$$aWeidenthaler, Claudia$$b9
000893912 7001_ $$00000-0002-1641-7068$$aEpple, Matthias$$b10$$eCorresponding author
000893912 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.1c02512$$gVol. 125, no. 21, p. 5645 - 5659$$n21$$p5645 - 5659$$tThe journal of physical chemistry <Washington, DC> / B$$v125$$x1520-5207$$y2021
000893912 8564_ $$uhttps://juser.fz-juelich.de/record/893912/files/acs.jpcb.1c02512.pdf
000893912 8564_ $$uhttps://juser.fz-juelich.de/record/893912/files/2021%20Metal-ligand%20interface%20and%20internal%20structure.pdf$$yPublished on 2021-05-24. Available in OpenAccess from 2022-05-24.
000893912 909CO $$ooai:juser.fz-juelich.de:893912$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b3$$kFZJ
000893912 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000893912 9141_ $$y2021
000893912 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000893912 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000893912 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-04
000893912 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000893912 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-04
000893912 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000893912 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000893912 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000893912 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-04
000893912 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2019$$d2021-02-04
000893912 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000893912 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000893912 920__ $$lyes
000893912 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000893912 980__ $$ajournal
000893912 980__ $$aVDB
000893912 980__ $$aUNRESTRICTED
000893912 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000893912 9801_ $$aFullTexts