Home > Publications database > Metal–Ligand Interface and Internal Structure of Ultrasmall Silver Nanoparticles (2 nm) > print |
001 | 893912 | ||
005 | 20210810182025.0 | ||
024 | 7 | _ | |a 10.1021/acs.jpcb.1c02512 |2 doi |
024 | 7 | _ | |a 1089-5647 |2 ISSN |
024 | 7 | _ | |a 1520-5207 |2 ISSN |
024 | 7 | _ | |a 1520-6106 |2 ISSN |
024 | 7 | _ | |a 2128/28212 |2 Handle |
024 | 7 | _ | |a altmetric:106376112 |2 altmetric |
024 | 7 | _ | |a 34029093 |2 pmid |
024 | 7 | _ | |a WOS:000661116600019 |2 WOS |
037 | _ | _ | |a FZJ-2021-02924 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Wetzel, Oliver |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Metal–Ligand Interface and Internal Structure of Ultrasmall Silver Nanoparticles (2 nm) |
260 | _ | _ | |a Washington, DC |c 2021 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1626670851_12786 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Ultrasmall silver nanoparticles were prepared by reduction with NaBH4 and surface-terminated with glutathione (GSH). The particles had a solid core diameter of 2 nm as shown by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). NMR-DOSY gave a hydrodynamic diameter of 2 to 2.8 nm. X-ray photoelectron spectroscopy (XPS) showed that silver is bound to the thiol group of the central cysteine in glutathione under partial oxidation to silver(+I). In turn, the thiol group is deprotonated to thiolate. X-ray powder diffraction (XRD) together with Rietveld refinement confirmed a twinned (polycrystalline) fcc structure of ultrasmall silver nanoparticles with a lattice compression of about 0.9% compared to bulk silver metal. By NMR spectroscopy, the interaction between the glutathione ligand and the silver surface was analyzed, also with 13C-labeled glutathione. The adsorbed glutathione is fully intact and binds to the silver surface via cysteine. In situ1H NMR spectroscopy up to 85 °C in dispersion showed that the glutathione ligand did not detach from the surface of the silver nanoparticle, i.e. the silver–sulfur bond is remarkably strong. The ultrasmall nanoparticles had a higher cytotoxicity than bigger particles in in vitro cell culture with HeLa cells with a cytotoxic concentration of about 1 μg mL–1 after 24 h incubation. The overall stoichiometry of the nanoparticles was about Ag∼250GSH∼155. |
536 | _ | _ | |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535) |0 G:(DE-HGF)POF4-5351 |c POF4-535 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Hosseini, Shabnam |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Loza, Kateryna |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Heggen, Marc |0 P:(DE-Juel1)130695 |b 3 |
700 | 1 | _ | |a Prymak, Oleg |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Bayer, Peter |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Beuck, Christine |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Schaller, Torsten |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Niemeyer, Felix |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Weidenthaler, Claudia |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Epple, Matthias |0 0000-0002-1641-7068 |b 10 |e Corresponding author |
773 | _ | _ | |a 10.1021/acs.jpcb.1c02512 |g Vol. 125, no. 21, p. 5645 - 5659 |0 PERI:(DE-600)2006039-7 |n 21 |p 5645 - 5659 |t The journal of physical chemistry |v 125 |y 2021 |x 1520-5207 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/893912/files/acs.jpcb.1c02512.pdf |
856 | 4 | _ | |y Published on 2021-05-24. Available in OpenAccess from 2022-05-24. |u https://juser.fz-juelich.de/record/893912/files/2021%20Metal-ligand%20interface%20and%20internal%20structure.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:893912 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130695 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5351 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-02-04 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-04 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-04 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-02-04 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-02-04 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J PHYS CHEM B : 2019 |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-04 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|