000893913 001__ 893913
000893913 005__ 20210810182038.0
000893913 0247_ $$2doi$$a10.1039/D1QM00641J
000893913 0247_ $$2Handle$$a2128/28098
000893913 0247_ $$2pmid$$a34262777
000893913 0247_ $$2WOS$$aWOS:000653850700001
000893913 037__ $$aFZJ-2021-02925
000893913 082__ $$a540
000893913 1001_ $$0P:(DE-HGF)0$$aPloner, Kevin$$b0
000893913 245__ $$aThe sol–gel autocombustion as a route towards highly CO 2 -selective, active and long-term stable Cu/ZrO 2 methanol steam reforming catalysts
000893913 260__ $$aLondon$$bRoyal Society of Chemistry$$c2021
000893913 3367_ $$2DRIVER$$aarticle
000893913 3367_ $$2DataCite$$aOutput Types/Journal article
000893913 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625929011_19248
000893913 3367_ $$2BibTeX$$aARTICLE
000893913 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893913 3367_ $$00$$2EndNote$$aJournal Article
000893913 520__ $$aPloner, Kevin; Nezhad, Parastoo Delir Kheyrollahi; Gili, Albert; Kamutzki, Franz; Gurlo, Aleksander; Doran, Andrew; Cao, Pengfei; Heggen, Marc; Köwitsch, Nicolas; Armbrüster, Marc; "The sol–gel autocombustion as a route towards highly CO 2-selective, active and long-term stable Cu/ZrO 2 methanol steam reforming catalysts", Mater. Chem. Front., (2021) 5, 5093-5105, DOI: 10.1039/D1QM00641JThe adaption of the sol–gel autocombustion method to the Cu/ZrO2 system opens new pathways for the specific optimisation of the activity, long-term stability and CO2 selectivity of methanol steam reforming (MSR) catalysts. Calcination of the same post-combustion precursor at 400 °C, 600 °C or 800 °C allows accessing Cu/ZrO2 interfaces of metallic Cu with either amorphous, tetragonal or monoclinic ZrO2, influencing the CO2 selectivity and the MSR activity distinctly different. While the CO2 selectivity is less affected, the impact of the post-combustion calcination temperature on the Cu and ZrO2 catalyst morphology is more pronounced. A porous and largely amorphous ZrO2 structure in the sample, characteristic for sol–gel autocombustion processes, is obtained at 400 °C. This directly translates into superior activity and long-term stability in MSR compared to Cu/tetragonal ZrO2 and Cu/monoclinic ZrO2 obtained by calcination at 600 °C and 800 °C. The morphology of the latter Cu/ZrO2 catalysts consists of much larger, agglomerated and non-porous crystalline particles. Based on aberration-corrected electron microscopy, we attribute the beneficial catalytic properties of the Cu/amorphous ZrO2 material partially to the enhanced sintering resistance of copper particles provided by the porous support morphology.
000893913 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000893913 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893913 7001_ $$0P:(DE-HGF)0$$aDelir Kheyrollahi Nezhad, Parastoo$$b1
000893913 7001_ $$00000-0001-7944-7881$$aGili, Albert$$b2
000893913 7001_ $$0P:(DE-HGF)0$$aKamutzki, Franz$$b3
000893913 7001_ $$0P:(DE-HGF)0$$aGurlo, Aleksander$$b4
000893913 7001_ $$00000-0001-5158-4569$$aDoran, Andrew$$b5
000893913 7001_ $$0P:(DE-Juel1)180314$$aCao, Pengfei$$b6
000893913 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b7
000893913 7001_ $$00000-0002-8742-9648$$aKöwitsch, Nicolas$$b8
000893913 7001_ $$0P:(DE-HGF)0$$aArmbrüster, Marc$$b9
000893913 7001_ $$0P:(DE-HGF)0$$aWatschinger, Maximilian$$b10
000893913 7001_ $$0P:(DE-HGF)0$$aKlötzer, Bernhard$$b11
000893913 7001_ $$00000-0002-2561-5816$$aPenner, Simon$$b12$$eCorresponding author
000893913 773__ $$0PERI:(DE-600)2867881-3$$a10.1039/D1QM00641J$$gVol. 5, no. 13, p. 5093 - 5105$$n13$$p5093 - 5105$$tMaterials chemistry frontiers$$v5$$x2052-1537$$y2021
000893913 8564_ $$uhttps://juser.fz-juelich.de/record/893913/files/d1qm00641j.pdf$$yOpenAccess
000893913 909CO $$ooai:juser.fz-juelich.de:893913$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180314$$aForschungszentrum Jülich$$b6$$kFZJ
000893913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b7$$kFZJ
000893913 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000893913 9141_ $$y2021
000893913 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-06-15
000893913 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-06-15
000893913 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-06-15
000893913 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000893913 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-06-15
000893913 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-06-15
000893913 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893913 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-06-15$$wger
000893913 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-06-15
000893913 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-06-15
000893913 920__ $$lyes
000893913 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000893913 980__ $$ajournal
000893913 980__ $$aVDB
000893913 980__ $$aUNRESTRICTED
000893913 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000893913 9801_ $$aFullTexts