TY  - JOUR
AU  - Ploner, Kevin
AU  - Delir Kheyrollahi Nezhad, Parastoo
AU  - Gili, Albert
AU  - Kamutzki, Franz
AU  - Gurlo, Aleksander
AU  - Doran, Andrew
AU  - Cao, Pengfei
AU  - Heggen, Marc
AU  - Köwitsch, Nicolas
AU  - Armbrüster, Marc
AU  - Watschinger, Maximilian
AU  - Klötzer, Bernhard
AU  - Penner, Simon
TI  - The sol–gel autocombustion as a route towards highly CO 2 -selective, active and long-term stable Cu/ZrO 2 methanol steam reforming catalysts
JO  - Materials chemistry frontiers
VL  - 5
IS  - 13
SN  - 2052-1537
CY  - London
PB  - Royal Society of Chemistry
M1  - FZJ-2021-02925
SP  - 5093 - 5105
PY  - 2021
AB  - Ploner, Kevin; Nezhad, Parastoo Delir Kheyrollahi; Gili, Albert; Kamutzki, Franz; Gurlo, Aleksander; Doran, Andrew; Cao, Pengfei; Heggen, Marc; Köwitsch, Nicolas; Armbrüster, Marc; "The sol–gel autocombustion as a route towards highly CO 2-selective, active and long-term stable Cu/ZrO 2 methanol steam reforming catalysts", Mater. Chem. Front., (2021) 5, 5093-5105,  DOI: 10.1039/D1QM00641JThe adaption of the sol–gel autocombustion method to the Cu/ZrO2 system opens new pathways for the specific optimisation of the activity, long-term stability and CO2 selectivity of methanol steam reforming (MSR) catalysts. Calcination of the same post-combustion precursor at 400 °C, 600 °C or 800 °C allows accessing Cu/ZrO2 interfaces of metallic Cu with either amorphous, tetragonal or monoclinic ZrO2, influencing the CO2 selectivity and the MSR activity distinctly different. While the CO2 selectivity is less affected, the impact of the post-combustion calcination temperature on the Cu and ZrO2 catalyst morphology is more pronounced. A porous and largely amorphous ZrO2 structure in the sample, characteristic for sol–gel autocombustion processes, is obtained at 400 °C. This directly translates into superior activity and long-term stability in MSR compared to Cu/tetragonal ZrO2 and Cu/monoclinic ZrO2 obtained by calcination at 600 °C and 800 °C. The morphology of the latter Cu/ZrO2 catalysts consists of much larger, agglomerated and non-porous crystalline particles. Based on aberration-corrected electron microscopy, we attribute the beneficial catalytic properties of the Cu/amorphous ZrO2 material partially to the enhanced sintering resistance of copper particles provided by the porous support morphology.
LB  - PUB:(DE-HGF)16
C6  - 34262777
UR  - <Go to ISI:>//WOS:000653850700001
DO  - DOI:10.1039/D1QM00641J
UR  - https://juser.fz-juelich.de/record/893913
ER  -