000893920 001__ 893920
000893920 005__ 20231123201912.0
000893920 0247_ $$2arXiv$$aarXiv:2103.05259
000893920 0247_ $$2Handle$$a2128/28100
000893920 0247_ $$2altmetric$$aaltmetric:101642627
000893920 037__ $$aFZJ-2021-02930
000893920 1001_ $$0P:(DE-Juel1)170068$$aSchiffer, Christian$$b0$$eCorresponding author$$ufzj
000893920 245__ $$a2D histology meets 3D topology: Cytoarchitectonic brain mapping with Graph Neural Networks
000893920 260__ $$c2021
000893920 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1700723807_27924
000893920 3367_ $$2ORCID$$aWORKING_PAPER
000893920 3367_ $$028$$2EndNote$$aElectronic Article
000893920 3367_ $$2DRIVER$$apreprint
000893920 3367_ $$2BibTeX$$aARTICLE
000893920 3367_ $$2DataCite$$aOutput Types/Working Paper
000893920 520__ $$aCytoarchitecture describes the spatial organization of neuronal cells in the brain, including their arrangement into layers and columns with respect to cell density, orientation, or presence of certain cell types. It allows to segregate the brain into cortical areas and subcortical nuclei, links structure with connectivity and function, and provides a microstructural reference for human brain atlases. Mapping boundaries between areas requires to scan histological sections at microscopic resolution. While recent high-throughput scanners allow to scan a complete human brain in the order of a year, it is practically impossible to delineate regions at the same pace using the established gold standard method. Researchers have recently addressed cytoarchitectonic mapping of cortical regions with deep neural networks, relying on image patches from individual 2D sections for classification. However, the 3D context, which is needed to disambiguate complex or obliquely cut brain regions, is not taken into account. In this work, we combine 2D histology with 3D topology by reformulating the mapping task as a node classification problem on an approximate 3D midsurface mesh through the isocortex. We extract deep features from cortical patches in 2D histological sections which are descriptive of cytoarchitecture, and assign them to the corresponding nodes on the 3D mesh to construct a large attributed graph. By solving the brain mapping problem on this graph using graph neural networks, we obtain significantly improved classification results. The proposed framework lends itself nicely to integration of additional neuroanatomical priors for mapping.
000893920 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000893920 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
000893920 536__ $$0G:(DE-HGF)InterLabs-0015$$aHIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)$$cInterLabs-0015$$x2
000893920 536__ $$0G:(DE-Juel-1)E.40401.62$$aHelmholtz AI - Helmholtz Artificial Intelligence Coordination Unit – Local Unit FZJ (E.40401.62)$$cE.40401.62$$x3
000893920 588__ $$aDataset connected to arXivarXiv
000893920 7001_ $$0P:(DE-HGF)0$$aHarmeling, Stefan$$b1
000893920 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b2$$ufzj
000893920 7001_ $$0P:(DE-Juel1)165746$$aDickscheid, Timo$$b3$$ufzj
000893920 8564_ $$uhttps://juser.fz-juelich.de/record/893920/files/Schiffer_MICCAI_2021.pdf$$yOpenAccess
000893920 909CO $$ooai:juser.fz-juelich.de:893920$$pVDB$$pdriver$$popen_access$$popenaire$$pdnbdelivery$$pec_fundedresources
000893920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170068$$aForschungszentrum Jülich$$b0$$kFZJ
000893920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b2$$kFZJ
000893920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165746$$aForschungszentrum Jülich$$b3$$kFZJ
000893920 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000893920 9141_ $$y2021
000893920 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893920 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000893920 980__ $$apreprint
000893920 980__ $$aVDB
000893920 980__ $$aI:(DE-Juel1)INM-1-20090406
000893920 980__ $$aUNRESTRICTED
000893920 9801_ $$aFullTexts