001     893920
005     20231123201912.0
024 7 _ |a arXiv:2103.05259
|2 arXiv
024 7 _ |a 2128/28100
|2 Handle
024 7 _ |a altmetric:101642627
|2 altmetric
037 _ _ |a FZJ-2021-02930
100 1 _ |a Schiffer, Christian
|0 P:(DE-Juel1)170068
|b 0
|e Corresponding author
|u fzj
245 _ _ |a 2D histology meets 3D topology: Cytoarchitectonic brain mapping with Graph Neural Networks
260 _ _ |c 2021
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1700723807_27924
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Cytoarchitecture describes the spatial organization of neuronal cells in the brain, including their arrangement into layers and columns with respect to cell density, orientation, or presence of certain cell types. It allows to segregate the brain into cortical areas and subcortical nuclei, links structure with connectivity and function, and provides a microstructural reference for human brain atlases. Mapping boundaries between areas requires to scan histological sections at microscopic resolution. While recent high-throughput scanners allow to scan a complete human brain in the order of a year, it is practically impossible to delineate regions at the same pace using the established gold standard method. Researchers have recently addressed cytoarchitectonic mapping of cortical regions with deep neural networks, relying on image patches from individual 2D sections for classification. However, the 3D context, which is needed to disambiguate complex or obliquely cut brain regions, is not taken into account. In this work, we combine 2D histology with 3D topology by reformulating the mapping task as a node classification problem on an approximate 3D midsurface mesh through the isocortex. We extract deep features from cortical patches in 2D histological sections which are descriptive of cytoarchitecture, and assign them to the corresponding nodes on the 3D mesh to construct a large attributed graph. By solving the brain mapping problem on this graph using graph neural networks, we obtain significantly improved classification results. The proposed framework lends itself nicely to integration of additional neuroanatomical priors for mapping.
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 1
536 _ _ |a HIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)
|0 G:(DE-HGF)InterLabs-0015
|c InterLabs-0015
|x 2
536 _ _ |a Helmholtz AI - Helmholtz Artificial Intelligence Coordination Unit – Local Unit FZJ (E.40401.62)
|0 G:(DE-Juel-1)E.40401.62
|c E.40401.62
|x 3
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Harmeling, Stefan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Amunts, Katrin
|0 P:(DE-Juel1)131631
|b 2
|u fzj
700 1 _ |a Dickscheid, Timo
|0 P:(DE-Juel1)165746
|b 3
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/893920/files/Schiffer_MICCAI_2021.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:893920
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)170068
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131631
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165746
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21