000893921 001__ 893921
000893921 005__ 20231123201912.0
000893921 0247_ $$2arXiv$$aarXiv:2011.12865
000893921 0247_ $$2altmetric$$aaltmetric:94939385
000893921 037__ $$aFZJ-2021-02931
000893921 1001_ $$0P:(DE-Juel1)170068$$aSchiffer, Christian$$b0$$eCorresponding author
000893921 1112_ $$a18th International Symposium on Biomedical Imaging (ISBI)$$cNice$$d2021-04-13 - 2021-04-16$$wFrance
000893921 245__ $$aContrastive Representation Learning for Whole Brain Cytoarchitectonic Mapping in Histological Human Brain Sections
000893921 260__ $$c2021
000893921 29510 $$aIEEE
000893921 300__ $$a4
000893921 3367_ $$2ORCID$$aCONFERENCE_PAPER
000893921 3367_ $$033$$2EndNote$$aConference Paper
000893921 3367_ $$2BibTeX$$aINPROCEEDINGS
000893921 3367_ $$2DRIVER$$aconferenceObject
000893921 3367_ $$2DataCite$$aOutput Types/Conference Paper
000893921 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1700723589_29181
000893921 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000893921 520__ $$aCytoarchitectonic maps provide microstructural reference parcellations of the brain, describing its organization in terms of the spatial arrangement of neuronal cell bodies as measured from histological tissue sections. Recent work provided the first automatic segmentations of cytoarchitectonic areas in the visual system using Convolutional Neural Networks. We aim to extend this approach to become applicable to a wider range of brain areas, envisioning a solution for mapping the complete human brain. Inspired by recent success in image classification, we propose a contrastive learning objective for encoding microscopic image patches into robust microstructural features, which are efficient for cytoarchitectonic area classification. We show that a model pre-trained using this learning task outperforms a model trained from scratch, as well as a model pre-trained on a recently proposed auxiliary task. We perform cluster analysis in the feature space to show that the learned representations form anatomically meaningful groups.
000893921 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000893921 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
000893921 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
000893921 536__ $$0G:(DE-Juel-1)E.40401.62$$aHelmholtz AI - Helmholtz Artificial Intelligence  Coordination Unit – Local Unit FZJ (E.40401.62)$$cE.40401.62$$x3
000893921 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b1
000893921 7001_ $$0P:(DE-HGF)0$$aHarmeling, Stefan$$b2
000893921 7001_ $$0P:(DE-Juel1)165746$$aDickscheid, Timo$$b3
000893921 7870_ $$0FZJ-2020-05011$$aSchiffer, Christian et.al.$$d2020$$iIsParent$$tContrastive Representation Learning for Whole Brain Cytoarchitectonic Mapping in Histological Human Brain Sections
000893921 8564_ $$uhttps://juser.fz-juelich.de/record/893921/files/Schiffer_etal_IEEE_2021.pdf$$yRestricted
000893921 8564_ $$uhttps://juser.fz-juelich.de/record/893921/files/Schiffer_etal_biorXiv_ISBI_2020_preprint.pdf$$yRestricted
000893921 909CO $$ooai:juser.fz-juelich.de:893921$$pec_fundedresources$$pVDB$$popenaire
000893921 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170068$$aForschungszentrum Jülich$$b0$$kFZJ
000893921 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b1$$kFZJ
000893921 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165746$$aForschungszentrum Jülich$$b3$$kFZJ
000893921 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000893921 9141_ $$y2021
000893921 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000893921 980__ $$acontrib
000893921 980__ $$aVDB
000893921 980__ $$acontb
000893921 980__ $$aI:(DE-Juel1)INM-1-20090406
000893921 980__ $$aUNRESTRICTED