001     893927
005     20210810182037.0
024 7 _ |a 10.3389/fneur.2021.677551
|2 doi
024 7 _ |a 2128/28105
|2 Handle
024 7 _ |a altmetric:108163705
|2 altmetric
024 7 _ |a 34248822
|2 pmid
024 7 _ |a WOS:000671984900001
|2 WOS
037 _ _ |a FZJ-2021-02937
082 _ _ |a 610
100 1 _ |a Traschütz, Andreas
|0 P:(DE-HGF)0
|b 0
245 _ _ |a The ARCA Registry: A Collaborative Global Platform for Advancing Trial Readiness in Autosomal Recessive Cerebellar Ataxias
260 _ _ |a Lausanne
|c 2021
|b Frontiers Research Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1625988635_31107
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Autosomal recessive cerebellar ataxias (ARCAs) form an ultrarare yet expanding group of neurodegenerative multisystemic diseases affecting the cerebellum and other neurological or non-neurological systems. With the advent of targeted therapies for ARCAs, disease registries have become a precious source of real-world quantitative and qualitative data complementing knowledge from preclinical studies and clinical trials. Here, we review the ARCA Registry, a global collaborative multicenter platform (>15 countries, >30 sites) with the overarching goal to advance trial readiness in ARCAs. It presents a good clinical practice (GCP)- and general data protection regulation (GDPR)-compliant professional-reported registry for multicenter web-based capture of cross-center standardized longitudinal data. Modular electronic case report forms (eCRFs) with core, extended, and optional datasets allow data capture tailored to the participating site's variable interests and resources. The eCRFs cover all key data elements required by regulatory authorities [European Medicines Agency (EMA)] and the European Rare Disease (ERD) platform. They capture genotype, phenotype, and progression and include demographic data, biomarkers, comorbidity, medication, magnetic resonance imaging (MRI), and longitudinal clinician- or patient-reported ratings of ataxia severity, non-ataxia features, disease stage, activities of daily living, and (mental) health status. Moreover, they are aligned to major autosomal-dominant spinocerebellar ataxia (SCA) and sporadic ataxia (SPORTAX) registries in the field, thus allowing for joint and comparative analyses not only across ARCAs but also with SCAs and sporadic ataxias. The registry is at the core of a systematic multi-component ARCA database cluster with a linked biobank and an evolving study database for digital outcome measures. Currently, the registry contains more than 800 patients with almost 1,500 visits representing all ages and disease stages; 65% of patients with established genetic diagnoses capture all the main ARCA genes, and 35% with unsolved diagnoses are targets for advanced next-generation sequencing. The ARCA Registry serves as the backbone of many major European and transatlantic consortia, such as PREPARE, PROSPAX, and the Ataxia Global Initiative, with additional data input from SPORTAX. It has thus become the largest global trial-readiness registry in the ARCA field.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Reich, Selina
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Adarmes, Astrid D.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Anheim, Mathieu
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ashrafi, Mahmoud Reza
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Baets, Jonathan
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Basak, A. Nazli
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Bertini, Enrico
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Brais, Bernard
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Gagnon, Cynthia
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Gburek-Augustat, Janina
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Hanagasi, Hasmet A.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Heinzmann, Anna
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Horvath, Rita
|0 P:(DE-HGF)0
|b 13
700 1 _ |a de Jonghe, Peter
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Kamm, Christoph
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Klivenyi, Peter
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Klopstock, Thomas
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Minnerop, Martina
|0 P:(DE-Juel1)131622
|b 18
700 1 _ |a Münchau, Alexander
|b 19
700 1 _ |a Renaud, Mathilde
|b 20
700 1 _ |a Roxburgh, Richard H.
|b 21
700 1 _ |a Santorelli, Filippo M.
|b 22
700 1 _ |a Schirinzi, Tommaso
|b 23
700 1 _ |a Sival, Deborah A.
|b 24
700 1 _ |a Timmann, Dagmar
|b 25
700 1 _ |a Vielhaber, Stefan
|b 26
700 1 _ |a Wallner, Michael
|b 27
700 1 _ |a van de Warrenburg, Bart P.
|b 28
700 1 _ |a Zanni, Ginevra
|b 29
700 1 _ |a Zuchner, Stephan
|b 30
700 1 _ |a Klockgether, Thomas
|b 31
700 1 _ |a Schüle, Rebecca
|b 32
700 1 _ |a Schöls, Ludger
|b 33
700 1 _ |a Synofzik, Matthis
|0 P:(DE-HGF)0
|b 34
|e Corresponding author
773 _ _ |a 10.3389/fneur.2021.677551
|g Vol. 12, p. 677551
|0 PERI:(DE-600)2564214-5
|p 677551
|t Frontiers in neurology
|v 12
|y 2021
|x 1664-2295
856 4 _ |u https://juser.fz-juelich.de/record/893927/files/Trasch%C3%BCtz_Front%20Neurol_ARCA%20registry_2021.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:893927
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)131622
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT NEUROL : 2019
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-28
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21