Home > Publications database > Accessing Mitochondrial Protein Import in Living Cells by Protein Microinjection > print |
001 | 893931 | ||
005 | 20240627202007.0 | ||
024 | 7 | _ | |a 10.3389/fcell.2021.698658 |2 doi |
024 | 7 | _ | |a 2128/28108 |2 Handle |
024 | 7 | _ | |a altmetric:109011155 |2 altmetric |
024 | 7 | _ | |a 34307376 |2 pmid |
024 | 7 | _ | |a WOS:000674898900001 |2 WOS |
037 | _ | _ | |a FZJ-2021-02941 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Bogorodskiy, Andrey |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Accessing Mitochondrial Protein Import in Living Cells by Protein Microinjection |
260 | _ | _ | |a Lausanne |c 2021 |b Frontiers Media |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1719492781_22749 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Mitochondrial protein biogenesis relies almost exclusively on the expression of nuclear-encoded polypeptides. The current model postulates that most of these proteins have to be delivered to their final mitochondrial destination after their synthesis in the cytoplasm. However, the knowledge of this process remains limited due to the absence of proper experimental real-time approaches to study mitochondria in their native cellular environment. We developed a gentle microinjection procedure for fluorescent reporter proteins allowing a direct non-invasive study of protein transport in living cells. As a proof of principle, we visualized potential-dependent protein import into mitochondria inside intact cells in real-time. We validated that our approach does not distort mitochondrial morphology and preserves the endogenous expression system as well as mitochondrial protein translocation machinery. We observed that a release of nascent polypeptides chains from actively translating cellular ribosomes by puromycin strongly increased the import rate of the microinjected pre-protein. This suggests that a substantial amount of mitochondrial translocase complexes was involved in co-translational protein import of endogenously expressed pre-proteins. Our protein microinjection method opens new possibilities to study the role of mitochondrial protein import in cell models of various pathological conditions as well as aging processes. |
536 | _ | _ | |a 5243 - Information Processing in Distributed Systems (POF4-524) |0 G:(DE-HGF)POF4-5243 |c POF4-524 |f POF IV |x 0 |
536 | _ | _ | |a 5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535) |0 G:(DE-HGF)POF4-5352 |c POF4-535 |f POF IV |x 1 |
536 | _ | _ | |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |0 G:(DE-HGF)POF4-5241 |c POF4-524 |f POF IV |x 2 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Okhrimenko, Ivan |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Maslov, Ivan |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Maliar, Nina |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Burkatovskii, Dmitrii |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a von Ameln, Florian |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Schulga, Alexey |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Jakobs, Philipp |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Altschmied, Joachim |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Haendeler, Judith |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Katranidis, Alexandros |0 P:(DE-Juel1)131971 |b 10 |u fzj |
700 | 1 | _ | |a Sorokin, Ivan |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Mishin, Alexey |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Gordeliy, Valentin |0 P:(DE-Juel1)131964 |b 13 |u fzj |
700 | 1 | _ | |a Büldt, Georg |0 P:(DE-Juel1)131957 |b 14 |
700 | 1 | _ | |a Voos, Wolfgang |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Gensch, Thomas |0 P:(DE-Juel1)131924 |b 16 |u fzj |
700 | 1 | _ | |a Borshchevskiy, Valentin |0 P:(DE-Juel1)179072 |b 17 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.3389/fcell.2021.698658 |g Vol. 9, p. 698658 |0 PERI:(DE-600)2737824-X |p 698658 |t Frontiers in cell and developmental biology |v 9 |y 2021 |x 2296-634X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/893931/files/fcell-09-698658.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:893931 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)131971 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)131964 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 16 |6 P:(DE-Juel1)131924 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 17 |6 P:(DE-Juel1)179072 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5243 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5352 |x 1 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5241 |x 2 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-01-30 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b FRONT CELL DEV BIOL : 2019 |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-01-30 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-30 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-01-30 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-01-30 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b FRONT CELL DEV BIOL : 2019 |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-30 |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-1-20200312 |k IBI-1 |l Molekular- und Zellphysiologie |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-6-20200312 |k IBI-6 |l Zelluläre Strukturbiologie |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-7-20200312 |k IBI-7 |l Strukturbiochemie |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IBI-1-20200312 |
980 | _ | _ | |a I:(DE-Juel1)IBI-6-20200312 |
980 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
981 | _ | _ | |a I:(DE-Juel1)ER-C-3-20170113 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|