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Abstract 

The Parieto-Frontal Integration Theory (P-FIT) predicts that human intelligence is 

closely linked to structural and functional properties of several brain regions mainly 

located in the parietal and frontal cortices. It also proposes that solving abstract 

reasoning tasks involves multiple processing stages and thus requires the harmonic 

interplay of these brain regions. However, empirical studies directly investigating the 

relationship between intellectual performance and the strength of individual functional 

connections related to the P-FIT network are scarce. Here we demonstrate, in two 

independent samples comprising a total of 1489 healthy individuals, that fMRI resting-

state connectivity, especially between P-FIT regions, is associated with interindividual 

differences in matrix reasoning performance. Interestingly, respective associations 

were only present in the overall samples and the female subsamples but not in the 

male subsamples, indicating a sex-specific effect. We found five statistically significant 

connections which replicated across both samples. These were constituted by BAs 8, 

10, 22, 39, 46, and 47 in the left as well as BAs 44 and 45 in the right hemisphere. 

Given that many of these brain regions are predominantly involved in language 

processing, we hypothesized that our results reflect the importance of inner speech for 

solving matrix reasoning tasks. Complementary to previous research investigating the 

association between intelligence and functional brain connectivity by means of 

comprehensive network metrics, our study is the first to identify specific connections 

from the P-FIT network whose functional connectivity strength at rest can be 

considered an indicator of intellectual capability. 

 

Keywords 

Resting-State fMRI, Functional Connectivity, Matrix Reasoning, Parieto-Frontal 

Integration Theory  
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Based on reliable scientific evidence accumulated over the course of more than a 

century, it is beyond dispute that individuals differ with regard to their intellectual 

abilities (Deary, 2012; Deary et al., 2010; Spearman, 1904). Since the dawn of 

intelligence research, it has been of considerable interest to establish a link between 

intellectual ability and the various properties of its underlying neural substrates within 

the human brain. Technical developments during the second half of the 20th century, 

such as magnetic resonance imaging and positron emission tomography, enabled 

researchers to assess a wide variety of structural and functional brain properties in 

vivo and investigate their relationship with intellectual abilities. According to evidence 

from this line of research, intelligence has been associated with numerous neural 

characteristics including brain volume (McDaniel, 2005; Pietschnig et al., 2015), 

cortical thickness (Karama et al., 2011; Narr et al., 2007), white matter integrity (Penke 

et al., 2012; Ritchie et al., 2015), structural connectivity (Li et al., 2009), task-based 

(Avery et al., 2020; Frith et al., 2021; Haier et al., 1988; Neubauer & Fink, 2009) and 

resting-state brain activity (Avery et al., 2020; Ezaki et al., 2020), as well as cortical 

microstructure (Genc et al., 2018). In line with the ever-growing arsenal of in vivo 

imaging techniques, the focus of neuroscientific approaches to intelligence research 

has shifted from the overall brain to single brain regions. However, converging 

evidence from a large body of literature indicates that intelligence is not tied to one 

particular brain region but related to the anatomical properties and functional activation 

patterns of multiple regions spread throughout the brain. 

In this regard, Jung and Haier (2007) conducted a review of 37 studies featuring data 

obtained by various neuroimaging techniques. Their efforts led to the proposal of the 

Parieto-Frontal Integration Theory of intelligence (P-FIT). From the combined 

evidence, Jung and Haier identified a set of 14 Brodmann areas (BAs), in which 

different neural properties had been consistently linked to intelligence. These were 
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mainly located in the dorsolateral prefrontal cortex, in the parietal lobule, in the anterior 

cingulate cortex and regions within the temporal and occipital lobes. The authors 

assumed that all P-FIT areas, even though they were identified independently of each 

other, had to be connected through a widespread network. Jung and Haier emphasized 

the fact that solving an abstract reasoning tasks involves multiple processing stages 

and thus requires the harmonic interplay of multiple brain regions. In more detail, the 

P-FIT model argues that intelligent thinking originates from the successful recognition 

and elaboration of information from sensory cortices. Consequentially, extrastriate 

cortex (BAs 18, 19) and temporal regions (BAs 21, 37) are hypothesized to be of prime 

importance for these first steps. Subsequently, structural symbolism and abstraction 

are believed to emerge from the supramarginal (BA 40), the superior parietal (BA 7), 

and the angular gyrus (BA 39). Following this, potential solutions to a given problem 

are thought be generated in frontal regions (BAs 6, 9, 10, 45, 46, 47) and fed forward 

to the anterior cingulate cortex (BA 32), which engages in a final response selection. 

This particular set of BAs was partially replicated and extended in a recent meta-

analysis by Basten et al. (2015). They identified six supplementary regions (BAs 8, 20, 

24, 31, 42, 44) that were added to the original P-FIT network. 

Given our present knowledge about the individual functions of P-FIT regions, it may 

seem plausible that they are organized in the network structure proposed by Jung and 

Haier (2007). However, this assumption has only been validated indirectly by previous 

research. The majority of these studies aimed to investigate the association between 

intelligence and functional brain network connectivity by means of fMRI resting-state 

data. This approach emanates from the idea that spontaneous fluctuations in the blood 

oxygenation level dependent (BOLD) signal contain information about the quality of 

evoked brain activity, e.g. mental effort exerted during reasoning (Fox & Raichle, 2007; 

Tavor et al., 2016). For example, Song et al. (2008) employed resting-state data to 
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relate the functional connectivity strength between bilateral dorsolateral prefrontal 

cortices and various other brain regions to general intelligence. The authors observed 

multiple statistically significant connections, which were exclusively constituted by BAs 

from the extended P-FIT model (BAs 9, 10, 40, 46). In another study, van den Heuvel 

et al. (2009) followed a graph theoretical approach in order to investigate the 

association between functional brain network properties and intellectual performance. 

Results showed a negative correlation between intelligence test scores and the 

characteristic path length of the resting-state brain network, indicating that intelligence 

is a function of how efficiently information is integrated between multiple brain regions. 

Again, these findings were mainly tied to P-FIT areas (BAs 7, 9, 10, 31 39, 40, 44, 45), 

albeit with an exploratory statistical threshold. In contrast, Hilger et al. (2017a) were 

not able to replicate these findings. With regard to the entire resting-state brain 

network, the authors did not observe a significant association between general 

intelligence and global efficiency, a graph measure inversely related to characteristic 

path length. In view of individual network nodes, three brain areas showed significant 

effects but only one of them, namely the dorsal anterior cingulate cortex (BA 32), could 

clearly be assigned to the P-FIT model. Yet another study by Hilger et al. (2017b) 

employed graph analysis to investigate whether and how the brain’s modular 

organization is associated with general intelligence. Again, no significant effects were 

found for global modularity features of the resting-state brain network. However, the 

authors identified several network nodes, in which between-module and/or within-

module connectivity could be related to general intelligence. The majority of these 

nodes comprised areas from the extended P-FIT model (BAs 6, 7, 8, 9, 10, 18, 39, 40, 

44, 47). One of the largest studies investigating the association between general 

intelligence and global functional network efficiency by means of graph analysis was 

conducted by Kruschwitz et al. (2018). The authors employed functional imaging data 
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provided by the Human Connectome Project (Van Essen et al., 2013) and used various 

network definition schemes to relate measures of general, crystallized, and fluid 

intelligence to different global graph metrics, namely global efficiency, characteristic 

path length, and global clustering coefficient. Contrary to van den Heuvel et al. (2009), 

but in line with Hilger et al. (2017a) and Hilger et al. (2017b), the global approach used 

by Kruschwitz et al. (2018) did not yield any robust associations and only very weak 

non-significant effects. Using independent component analysis, Vakhtin et al. (2014) 

managed to identify a total of 29 functional networks in two independent sets of fMRI 

data. The first set was obtained while participants were at rest and the second while 

participants were solving a matrix reasoning task. Out of all functional networks, 26 

were present in both datasets, supporting the idea that spontaneous fluctuations in the 

BOLD signal are informative of task-based brain activity. Notably, 10 functional 

networks, which were broadly consistent with the P-FIT model, were correlated with 

the matrix reasoning test scores. Santarnecchi, Emmendorfer, Tadayon, et al. (2017) 

utilized fMRI resting-state data from a large sample in order to investigate the 

properties of a functional network (BAs 6, 7, 9, 10, 18, 32, 40, 46, 47) underlying fluid 

intelligence (Santarnecchi, Emmendorfer, & Pascual-Leone, 2017). Results showed 

that left inferior frontal (BAs 6, 9) and left inferior parietal regions (BA 40) exerted high 

connectivity with the rest of the network, indicating a pivotal role of these P-FIT areas 

in fluid intelligence. Furthermore, the authors generated a seed-based connectivity 

map between the fluid intelligence network and the rest of the brain. The respective 

map exhibited a high degree of similarity with three other major parieto-frontal resting-

state networks. Dubois et al. (2018) investigated the relationship between general 

intelligence and functional connectivity by analyzing fMRI resting-state data provided 

by the Human Connectome Project (Van Essen et al., 2013). The authors 

demonstrated that about 20% of variance in general intelligence can be explained 
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when considering the entire connectivity matrix of each participant. When restricting 

the analysis to the most predictive edges, particular resting-state networks, namely the 

fronto-parietal network, the default mode network, the control network, and the visual 

network, turned out to carry more information than others. Respective results were 

found to be in general agreement with the P-FIT model. Another study employing the 

Human Connectome Project's dataset was conducted by Finn et al. (2015). More 

specifically, the authors used fMRI resting-state data recorded on two separate days 

to demonstrate that it is possible to match the two connectivity matrices of a participant 

with more than 90% accuracy. When restricting this identification procedure to edges 

from parieto-frontal regions, accuracy increased to almost 100%. In addition to that, 

the authors used the resting-state data to create linear regression models for the 

purpose of predicting matrix reasoning performance. Predicted scores were highly 

correlated with observed scores. Again, this association was mainly driven by edges 

constituting parieto-frontal networks similar to the P-FIT model. 

Based on these findings, one can conclude that the general idea of P-FIT areas 

constituting a functionally connected network rests on a solid foundation of empirical 

evidence. However, none of the aforementioned studies was exclusively targeted at 

investigating the association between intelligence and the properties of individual 

functional connections from the P-FIT network. Consequentially, previous research is 

limited to some extent. For example, Song et al. (2008) refrained from examining a 

network spanning the whole brain but focused on functional connectivity emanating 

from a priori defined seed regions in the dorsolateral prefrontal cortices. Other studies 

used graph theoretical measures in order to quantify functional connectivity (Hilger et 

al., 2017a, 2017b; van den Heuvel et al., 2009). Graph theory offers various metrics 

which capture the overall quality of a brain network or highlight the importance of 

particular nodes that contribute to the network's connectivity. However, these metrics 
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are computed by aggregating information from all individual connections constituting 

the brain network. Hence, results obtained by this method only provide limited insight 

regarding the the properties of individual connections. In many cases (Dubois et al., 

2018; Finn et al., 2015; Santarnecchi, Emmendorfer, & Pascual-Leone, 2017; 

Santarnecchi, Emmendorfer, Tadayon, et al., 2017), other networks than the P-FIT 

network were used as the prime object of investigation and P-FIT was merely used as 

the theoretical framework to interpret results, e.g. functional connectivity patterns 

observed in parieto-frontal regions. Due to these reasons, it remains unclear whether 

intelligence is related to the functional connectivity strength of individual connections 

nominated by the P-FIT model. 

With the study at hand, we aimed to close this gap of knowledge by testing following 

three hypotheses. First, the P-FIT model promotes the idea that brain regions related 

to intelligence are organized in a functional network through which information is 

exchanged. Based on the research presented above, it is conceivable that efficient 

information exchange relies on a brain infrastructure that fosters high functional 

coherence between brain regions even in their resting state. Following this assumption, 

we hypothesized that higher BOLD signal correlations observed at rest would be 

associated with better performance on a matrix reasoning test. Hence, we analyzed 

the resting-state properties of functional connections included in the P-FIT network, 

but also of those spanning the rest of the brain. We expected significant associations 

between functional connectivity strength and matrix reasoning performance to be 

predominantly exhibited by connections from the P-FIT network and to a lesser degree 

by connections unrelated to the P-FIT model.  

Second, Jung and Haier (2007) suggested a serial flow of information through the P-

FIT network when engaging in abstract reasoning. With regard to this concept, we 

hypothesized that the majority of connections, expressing significant associations 
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between functional connectivity strength and matrix reasoning performance, would 

conform to this pattern. In more detail, we expected the trajectory of respective 

connections to match one of the steps proposed by the serial flow information model, 

i.e. from visual/temporal areas to parietal areas, from parietal areas to frontal areas, 

and from frontal areas to the cingulate cortex. Accordingly, we assumed that the 

strength of functional connections omitting some of the aforementioned steps, e.g. by 

directly linking visual and frontal areas, would not be significantly associated with 

matrix reasoning performance or exhibit weaker correlations. In previous research, 

functional resting-state correlations have already been used to identify serial flow of 

information in the visual system (Genc et al., 2016). 

Third, Jung and Haier (2007) did not make any assumptions regarding the absence of 

particular functional connections within the P-FIT network. Intellectual performance 

can benefit from an exchange of relevant information between brain areas since it has 

a positive impact on signal-to-noise ratio. However, it has also been suggested that 

mental capacity might be fostered by neural architectures built to filter out or shield 

themselves against irrelevant information (Genc et al., 2018). Avoiding unnecessary 

crosstalk between specific brain areas might lead to substantial decreases in a 

system's level of noise. Respective processes should be represented by negative 

correlations between intelligence and the functional connectivity strength between two 

brain areas. Given that such inverse relationships have been reported in previous 

research (Hilger et al., 2017b; Song et al., 2008), we assumed that they should also 

be found for the P-FIT network. Hence, we hypothesized to observe both positive and 

negative associations in our analyses. 

In order to test these hypotheses, we employed data from two large samples, one 

recruited by ourselves and one provided by the Human Connectome Project (Van 

Essen et al., 2013). To the best of our knowledge, we present the first study to directly 
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examine all possible functional connections from the entire Brodmann atlas in order to 

investigate whether matrix reasoning performance is significantly associated with the 

functional connectivity strength of individual connections from the P-FIT network.  
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Materials and Methods 

Participants in the S498 sample 

The first sample, hereinafter referred to as sample S498, was recruited at Ruhr-

University Bochum in Germany. Subjects were either paid for their participation or 

received course credit. All of them were naive to the purpose of the study and had no 

former experience with the administered matrix reasoning test. All participants had 

normal or corrected-to-normal vision and hearing, matched the standard inclusion 

criteria for fMRI examinations, and declared to have no history of psychiatric or 

neurological disorders. Each participant completed both the matrix-reasoning test and 

neuroimaging session described below. In total, we recruited 557 participants. Within 

this group, 503 participants were right-handed and 54 (9.69%) were left-handed as 

measured by the Edinburgh Handedness Inventory (Oldfield, 1971). This ratio is 

representative of the human population (Raymond & Pontier, 2004). Given that 

handedness has been shown to affect brain organization (Amunts et al., 2000; Amunts 

et al., 1996), we decided to exclude all left-handed subjects from our analysis. Within 

the remaining group of 503 participants, matrix reasoning test scores were checked 

for outliers as defined by Tukey's fences (Tukey, 1977), i.e. observations 1.5 

interquartile ranges below the first or above the third quartile, and respective cases 

were removed from the dataset accordingly. As a consequence, five participants had 

to be excluded. Thus, all of the reported analyses were performed on the remaining 

data from 498 participants (245 males) between 18 and 72 years of age (M = 27.41, 

SD = 9.37). We utilized G*Power (Faul et al., 2009) in order to compute the achieved 

power of our final sample post hoc. The analysis was based on a bivariate normal 

model for correlations and an effect size of r = 0.15 since this was about the average 

magnitude of correlation coefficients in the S498 sample. We set α to .05 and 

determined testing to be two-tailed. Based on these parameters, the analysis yielded 
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a statistical power of .92, which indicates sufficient sample size. The study was 

approved by the local ethics committee of the Faculty of Psychology at Ruhr-University 

Bochum. All participants gave their written informed consent and were treated in 

accordance with the declaration of Helsinki. 

 

Participants in the S991 sample 

In order to validate the results obtained from the S498 sample, we downloaded data 

provided by the Human Connectome Project, namely the S1200 release (Van Essen 

et al., 2013). We obtained 1088 participants with data suitable for our analyses from 

the "Structural Preprocessed" and "Resting State fMRI 1 Preprocessed" packages. As 

with sample S498, we removed all left-handed participants (n = 97, 8.9%) from our 

analysis. Matrix reasoning test scores of the remaining participants were checked for 

outliers but none were found. Thus, no further participants were excluded and all of the 

reported analyses were performed on data from 991 subjects (447 males) between 22 

and 36 years of age (M = 28.78, SD = 3.70). Again, we utilized G*Power in order to 

compute the statistical power achieved by this sample post hoc. Based on the sample 

size of 991 participants and the same parameters used for sample S498, the analysis 

resulted in an achieved power that was above .99. 

 

Acquisition of behavioral data in the S498 sample 

The acquisition of behavioral data was conducted in a group setting of up to six 

participants, seated at individual tables, in a quiet and well-lit room. Matrix reasoning 

performance was measured with a German matrix-reasoning test called Bochumer 

Matrizentest (BOMAT) (Hossiep et al., 2001), which is widely used in neuroscientific 

research (Genc et al., 2018; Klingberg, 2010; Oelhafen et al., 2013). The test examines 

non-verbal mental abilities that contribute to intelligence and is similar to Raven's 
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Advanced Progressive Matrices (Raven et al., 2003). We conducted the "advanced 

short version" of the BOMAT, which has the advantage of high discriminatory power in 

samples with generally high intellectual abilities, thus avoiding possible ceiling effects 

(Genc et al., 2018). The BOMAT inventory comprises two parallel test forms (A and B) 

with 29 matrix-reasoning items each. Participants had to complete only one of the two 

test forms, which were randomly assigned. Split-half reliability of the BOMAT is .89, 

Cronbach's α is .92 and parallel-forms reliability between A and B is .86 (Hossiep et 

al., 2001). Additionally, convergent and predictive validity are given for both BOMAT 

test forms since they are strongly correlated with other intelligence inventories (r = .59), 

tests of perceptual speed (r = .51), and German high school GPA (r = -.35) (Hossiep 

et al., 2001). The recent norming sample consists of about 2100 individuals with an 

age range between 18-60 years and equal sex representation. 

 

Acquisition of behavioral data in the S991 sample 

In sample S991, matrix reasoning performance was measured with the Penn Matrix 

Analysis Test (PMAT24) (Moore et al., 2015). This instrument is included in the 

Computerized Neuropsychological Test Battery provided by the University of 

Pennsylvania (PennCNP). The PMAT24 is an abbreviated version of the Raven's 

Progressive Matrices and includes 24 items of increasing difficulty. Each matrix pattern 

is made up of 2x2, 3x3, or 1x5 arrangements of squares with one of the squares 

missing. The participant must pick one of five response choices that best fits the 

missing square on the pattern. There is no time limit to the completion of the test, 

although the task discontinues if the participant makes five incorrect responses in a 

row. The PMAT24 has two test forms of which the Human Connectome Project only 

used one (form A) in order to assess matrix reasoning performance. 
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Acquisition of imaging data in the S498 sample 

All imaging data were acquired at the Bergmannsheil hospital in Bochum (Germany) 

using a Philips 3T Achieva scanner with a 32-channel head coil. For the purpose of 

segmenting brain scans into gray and white matter segments as well as for the 

identification of anatomical landmarks, a T1-weighted high-resolution anatomical 

image was acquired (MP-RAGE, TR = 8.2 ms, TE = 3.7 ms, flip angle = 8°, 220 slices, 

matrix size = 240 x 240, voxel size = 1 x 1 x 1 mm). The acquisition time of the 

anatomical image was six minutes. For the analysis of functional connectivity, fMRI 

resting-state data were acquired using echo planar imaging (TR = 2000 ms, TE = 30 

ms, flip angle = 90°, 37 slices, matrix size = 80 x 80, resolution = 3 x 3 x 3 mm). 

Participants were instructed to lay still with their eyes closed and to think of nothing in 

particular. The acquisition time of the resting-state images was seven minutes. 

 

Acquisition of imaging data in the S991 sample 

All imaging data included in the S991 sample were acquired on a customized Siemens 

3T Connectome Skyra scanner housed at Washington University in St. Louis using a 

standard 32-channel Siemens receive head coil. The Human Connectome Project's 

imaging hardware and protocols are documented elaborately in several publications 

(Smith et al., 2013; Van Essen et al., 2013; Van Essen et al., 2012) as well as the 

reference manual for the S1200 release. Anatomical and functional imaging were 

carried out in the same session with a mock scanner practice preceding the anatomical 

imaging. A T1-weighted high-resolution anatomical image was acquired by means of 

an MP-RAGE sequence and the following parameters: TR = 2400 ms, TE = 2.14 ms, 

flip angle = 8°, matrix size = 224 x 224, voxel size = 0.7 x 0.7 x 0.7 mm. The acquisition 

time of anatomical imaging was seven minutes and 40 seconds. Functional resting-

state imaging was carried out using multiband accelerated echo planar imaging with a 
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multiband factor of eight (TR = 700 ms, TE = 33 ms, flip angle = 52°, 72 slices, matrix 

size = 104 x 90, resolution = 2 x 2 x 2 mm). Cardiac and respiratory signals were 

recorded at a sampling rate of 400 Hz using a pulse oximeter and respiratory bellows 

that were fitted to participants prior to the fMRI scans. In order to prevent the subjects 

from falling asleep during scanning, they were asked to keep their eyes open and fixate 

on a white cross while thinking of nothing in particular. For each participant, the Human 

Connectome Project provides a total of four 15-minute resting-state scans, of which 

the first two scans were recorded during the participant's first visit to the scanning site, 

while the other two were recorded during the participant's second visit on a separate 

day. In order to ensure maximum comparability between the S498 and the S991 

samples, we refrained from analyzing imaging data collected on two separate days 

and merely included the first two scans provided by the Human Connectome Project. 

These two scans were acquired with opposite phase-encoding directions. Total 

acquisition time of resting-state fMRI was 30 minutes. 

 

Analysis of imaging data in the S498 sample 

In order to reconstruct the cortical surfaces of the T1-weighted images we used 

published surface-based methods in FreeSurfer (http://surfer.nmr.mgh.harvard.edu, 

version 5.3.0). The details of this procedure have been described elsewhere (Dale et 

al., 1999; Fischl et al., 1999). The automated reconstruction steps included skull 

stripping, gray and white matter segmentation as well as reconstruction and inflation 

of the cortical surface. After preprocessing, each individual segmentation was quality-

controlled slice by slice and any inaccuracies were corrected by manual editing if 

necessary. In addition to gray and white matter masks, FreeSurfer's automated brain 

segmentation also yielded various ventricle masks and a cortical parcellation based on 

the PALS-B12 atlas (Van Essen, 2005), which in turn is based on the cytoarchitectonic 
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areas defined by Brodmann (1909). It has to be noted that there are more sophisticated 

parcellation schemes which comprise a substantially higher number of individual brain 

regions compared to Brodmann's delineation of the cortex (Genc et al., 2018; Glasser 

et al., 2016; Power et al., 2011; Shen et al., 2013). However, since the original P-FIT 

model was defined using BAs, we decided to utilize the same segmentation in order to 

ensure high comparability between our analyses and the model we wanted to 

investigate. The PALS-B12 atlas was provided in the form of annotation files 

comprising a total of 82 brain regions that had to be converted to volumetric masks. In 

a final step, the two segments delineating the overall cortex and white matter as well 

as the ventricle masks and all 82 masks representing single BAs were linearly 

transformed into the native space of the resting-state images (Figure 1). 

 

Insert Figure 1 about here 

 

The transformed regions served as anatomical landmarks from which average BOLD 

signal timecourses were extracted. Resting-state data were preprocessed using 

MELODIC, which is part of the FSL toolbox. The first two EPI volumes were discarded 

from each resting-state scan to allow for signal equilibration. Motion and slice-timing 

correction as well as high-pass temporal frequency filtering (0.005 Hz) were applied. 

In order to avoid spurious correlations in neighboring voxels, spatial smoothing was 

not applied. 

 

Analysis of imaging data in the S991 sample 

The preprocessing of anatomical and functional data from the S991 sample was 

carried out according to the Human Connectome Project's minimal preprocessing 

pipelines (Glasser et al., 2013). Importantly, this pipeline also aims to minimize the 
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smoothing from interpolation and does not involve any overt volume smoothing. We 

applied the same steps as used for the S498 sample in order to generate volumetric 

masks, representing overall cortex, white matter, ventricles and BAs, from the T1-

weighted anatomical images. Finally, all respective masks were linearly transformed 

into the native space of resting-state images and average BOLD signal timecourses 

were extracted. In order to combine our analyses across the two 15-minute runs 

obtained for every participant, we followed an approach suggested by the Human 

Connectome Project (Smith et al., 2013) and simply concatenated each timeseries 

encoded in the right-left direction with its respective counterpart encoded in the left-

right direction. 

 

Statistical analysis 

All statistical analyses were carried out using MATLAB version R2020b (The 

MathWorks Inc., Natick, MA). For the purpose of generating functional connectivity 

matrices and relating them to matrix reasoning test scores, we used linear parametric 

methods. Testing was always two-tailed with an α-level of .05, which we eventually 

corrected for multiple comparisons using the Benjamini-Hochberg method (Benjamini 

& Hochberg, 1995). For every participant we computed partial correlation coefficients 

between the average BOLD signal timecourses of all BAs while controlling for several 

nuisance variables. We regressed out the trajectories of all six motion parameters as 

well as the mean timecourses averaged across voxels representing white matter or 

cerebro-spinal fluid (Genc et al., 2016). This resulted in a symmetrical 82-by-82 matrix 

for each participant with partial correlation coefficients representing the functional 

connectivity of 3321 individual resting-state connections (one matrix triangle without 

self-connections on the diagonal). By applying Fisher z-transformation to all values 

(Fisher, 1921), we ensured that these partial correlation coefficients were normally 
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distributed. In order to remove spurious functional connections from our analyses, we 

created a pruned version of each participant's connectivity matrix (Song et al., 2008). 

All network edges, i.e. cells containing normalized BOLD signal correlations, that did 

not reach statistical significance in 90% of subjects across both samples, were 

discarded. Only the remaining portion of each participant's connectivity matrix was 

considered for further analyses. In the S498 sample, we computed partial correlation 

coefficients between functional connectivity values and BOMAT test scores while 

controlling for the effects of age and in-scanner head motion in terms of mean 

framewise displacement. In the S991 sample, we proceeded in the same manner but 

used PMAT24 test scores. In both cases, the resulting test statistics were corrected 

for multiple comparisons using the Benjamini-Hochberg method. Finally, all functional 

connections which exhibited significant associations between their normalized BOLD 

signal correlations and the matrix reasoning test scores across both samples were 

subjected to multiple regression analysis. Here, normalized BOLD signal correlations 

of the selected connections served as independent variables and matrix reasoning test 

scores were used as the independent variable. Firstly, single regression models 

including all participants of a sample were computed for the S498 and S991 datasets, 

respectively. Secondly, regression models based on randomly picked subsamples with 

only 75% of subjects were computed in iterative fashion (10000 analyses per group) 

and test statistics were averaged across all iterations. We conducted aforementioned 

analyses for the entirety of each sample as well as separately for male and female 

participants. 

 

Data and code availability 

The data and MATLAB code that support the findings of this study are available from 

the corresponding author upon reasonable request or can be downloaded from an 
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Open Science Framework repository [XXX]. The data used for sample S991 are part 

of the S1200 release provided by the Human Connectome Project and can be 

accessed via its ConnectomeDB platform [https://db.humanconnectome.org/].  
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Results 

For sample S498, functional resting-state connectivity exhibited by 3321 individual 

connections is illustrated as a symmetrical 82-by-82 matrix in Supplementary Figure 

1. The respective matrix was obtained by averaging all individual connectivity matrices 

from sample S498. In a subsequent step, potentially spurious functional connections 

were removed from each participant's connectivity matrix by discarding all cells in 

which normalized BOLD signal correlations failed to reach statistical significance in 

90% of subjects across both samples. Thereby, 2920 individual functional connections 

were excluded from further analysis and only 401 connections (12.07%) remained 

(counting only one triangle of the matrix without self-connections on the diagonal). 

Notably, none of the negative correlation coefficients survived this pruning procedure. 

For sample S498, the pruned version of the mean connectivity matrix is presented in 

Supplementary Figure 2. In order to test whether functional connectivity at rest was 

associated with matrix reasoning performance, we correlated the remaining functional 

connectivity values with BOMAT test scores, while controlling for the effects of age and 

in-scanner head motion (Figure 2). 

 

Insert Figure 2 about here 

 

While the resulting partial correlation coefficients were in the range of -.07 to .19 and 

thus indicated both negative and positive associations, the majority of associations 

was positive (364 out of 401, 90.77%). After correcting for multiple comparisons, the 

partial correlation coefficients in 31 functional connections still reached statistical 

significance (7.73%, r = .13 to .19). Twenty out of these 31 connections were 

exclusively constituted of BAs from the P-FIT network (64.52%). Nine connections ran 

between a BA from the P-FIT network and a BA unrelated to P-FIT (29.03%). Out of 
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all connections for which functional connectivity was significantly associated with 

BOMAT test scores, we only observed two that did not involve at least one BA from 

the P-FIT network (6.45%). Altogether, we identified 15 intrahemispheric connections 

in the left hemisphere (48.39%), six intrahemispheric connections in the right 

hemisphere (19.35%), and 10 interhemispheric connections (32.26%) (Figure 3). 

 

Insert Figure 3 about here 

 

Data from the S991 sample were analyzed in accordance with the approach followed 

for the S498 sample. Again, functional connectivity between BAs is illustrated by 

symmetrical 82-by-82 matrices, one representing the entire network (Supplementary 

Figure 3) and one representing its pruned version (Supplementary Figure 4). For each 

of the 401 individual connections in sample S991 functional connectivity values were 

correlated with PMAT24 test scores, while controlling for the effects of age and in-

scanner head motion (Figure 4). 

 

Insert Figure 4 about here 

 

As with sample 498, the resulting partial correlation coefficients indicated both negative 

and positive associations, this time in the range of -.05 to .15. Further, the number of 

connections expressing positive associations between functional connectivity and 

PMAT24 test scores (337 out of 401, 84.04%) was comparable to the S498 sample. 

Forty-three of these partial correlation coefficients, all of them positive, survived a 

correction for multiple comparisons and still reached statistical significance (10.72%, r 

= .09 to .15). As with sample S498, most statistically significant connections were 

exclusively constituted of BAs from the P-FIT network (17 out of 43, 39.53%). We found 

15 statistically significant connections which ran between one BA from the P-FIT 
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network and one unrelated BA (34.88%). Lastly, we observed 11 statistically significant 

connections between BAs completely unrelated to the P-FIT network (25.58%). The 

43 statistically significant connections included 12 intrahemispheric connections in the 

left hemisphere (27.91%), 11 intrahemispheric connections in the right hemisphere 

(25.58%), and 20 interhemispheric connections (46.51%) (Figure 5).  

 

Insert Figure 5 about here 

 

Five statistically significant connections were present in both samples. Among these 

were three intrahemispheric connections in the left hemisphere, namely one between 

BAs 8 and 47 (S498: r = .14, p < .01; S991: r = .09, p < .01), one between BAs 10 and 

22 (S498: r = .15, p < .001; S991: r = .13, p < .001), and one between BAs 10 and 39 

(S498: r = .14, p < .01; S991: r = .12, p < .001). Moreover, there were two 

interhemispheric connections, namely one between BA 46 in the left and BA 44 in the 

right hemisphere (S498: r = .17, p < .001; S991: r = .10, p < .01) as well as one between 

BA 46 in the left and BA 45 in the right hemisphere (S498: r = .14, p < .01; S991: r = 

.09, p < .01). The connections between BAs 8 and 47 as well as BAs 10 and 39 were 

exclusively constituted by areas nominated by the P-FIT model, whereas each of the 

remaining three connections included one related (BAs 10, 46) and one unrelated area 

(BAs 22, 44, 45). In addition to the five connections which replicated across both 

samples, we also found 22 BAs that constituted statistically significant connections in 

both samples. Within the left hemisphere, 11 (50.00%) of these were related to the P-

FIT model (BAs 6, 7, 8, 9, 10, 21, 39, 40, 42, 46, 47) and two (9.09%) were not (BAs 

4, 22). Within the right hemisphere, four (18.18%) were related to the P-FIT model 

(BAs 9, 32, 40, 46) and five (22.73%) were not (BAs 22, 42, 43, 44, 45). 
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Subsequent to examining the entire samples, we also conducted aforementioned 

analyses for male and female participants separately. Within both male subsamples, 

we did not observe a single statistically significant association between functional 

connectivity and matrix reasoning performance after applying correction for multiple 

comparisons. In contrast, we found 33 partial correlation coefficients that reached 

statistical significance in the female subsample of S498 (8.23%, r = .18 to .29) 

(Supplementary Figure 5). As with the entire sample, the majority of connections was 

exclusively constituted by BAs from the P-FIT network (20 out of 33, 60.61%). Further, 

13 connections included one BA from the P-FIT network and one unrelated BA 

(39.39%), while no connection was completely unrelated to the P-FIT network. The 

overall set of significant connections included 11 intrahemispheric connections in the 

left hemisphere (33.33%), seven intrahemispheric connections in the right hemisphere 

(21.21%), and 15 interhemispheric connections (45.45%) (Supplementary Figure 6). 

Within the female subsample of S991, we identified 13 functional connections which 

exhibited statistically significant associations between functional connectivity and 

PMAT24 test scores (3.24%, r = .14 to .17) (Supplementary Figure 7). We found seven 

of these connections to be entirely constituted by P-FIT areas (53.85%), three 

connections to be partly constituted by P-FIT areas (23.08%), and three connections 

to be constituted by BAs that were entirely unrelated to the P-FIT network (23.08%). 

In view of the general trajectories of these statically significant connections, we 

observed six intrahemispheric connections in the left hemisphere (46.15%), two 

intrahemispheric connections in the right hemisphere (15.38%), and five 

interhemispheric connections (38.46%) (Supplementary Figure 8). Two of the 33 

statistically significant connections in the female subsample of S498 were also present 

among the 13 connections in the female subsample of S991. One of them was an 

intrahemispheric connection already observed for the entire samples, namely that 
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between left hemispheric BAs 8 and 47 (S498: r = .18, p < .01; S991: r = .15, p < .001). 

The other was an interhemispheric connection between BA 42 in the left and BA 22 in 

the right hemisphere (S498: r = .19, p < .01; S991: r = .14, p < .001). In addition, we 

also identified 12 BAs that constituted statistically significant connections in the female 

subsamples of S498 and S991. All of the six BAs within the left hemisphere (50.00%) 

were related to the P-FIT model (BAs 8, 10, 40, 42, 46, 47). Within the right 

hemisphere, three BAs (25.00%) were related to the P-FIT model (BAs 10, 40, 46) and 

three (25.00%) were not (BAs 22, 44, 45). 

In order to further examine the five statistically significant connections which replicated 

across both samples, we conducted various multiple regression analyses. For the 

respective regression models, the normalized BOLD signal correlations exhibited by 

aforementioned five connections were used as independent variables. In the S498 

sample (Supplementary Table 1), BOMAT test scores served as the dependent 

variable, whereas PMAT24 test scores were used as the dependent variable in the 

S991 sample (Supplementary Table 2). All following results refer to the adjusted R2 of 

respective regression models. When utilizing data from the entire samples, the 

regression model of sample S498 was able to explain 4.60% of variance in matrix 

reasoning performance and that of sample S991 yielded 3.35% of explained variance. 

Both models were found to be highly significant (p < .001). Moreover, the functional 

connection between BA 46 in the left and BA 44 in the right hemisphere exhibited the 

highest unique contribution towards predicting matrix reasoning performance in both 

samples (S498: β = 0.12, p < .05; S991: β = 0.16, p < .05). 

Subsequent to the analysis of the entire samples, we computed aforementioned 

models separately for both sexes using only data from the male and female 

subsamples, respectively. The model based on the male subsample of S498 explained 

less variance compared to the overall sample's model and did not reach statistical 
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significance (R2
adj = 2.20%, p = .066). In contrast, explained variance was highest in 

the model based on the female subsample, which also turned out to be highly 

significant (R2
adj = 7.23%, p < .001). Results showed a similar pattern for the S991 

sample. Here, both models reached statistical significance, but the male subsample's 

model (R2
adj = 1.96%, p < .05) explained less variance in matrix reasoning performance 

compared to the overall sample's model and the female subsample's model (R2
adj = 

3.94%, p < .001). 

In a last step, we computed all of the aforementioned regression models with randomly 

picked subsamples including only 75% of participants. For each of the entire samples 

as well as their male and female subsample's, we computed 10000 iterations of the 

respective model and averaged relevant test statistics. In so doing, we found that mean 

explained variance was highest in regression models based on female subsamples 

(S498: R2
adj_mean = 7.21%; S991: R2

adj_mean = 3.99%), followed by models based on 

entire samples (S498: R2
adj_mean = 4.59%; S991: R2

adj_mean = 3.36%), followed by 

models based on male subsamples (S498: R2
adj_mean = 2.24%; S991: R2

adj_mean = 

1.96%). Additional test statistics, such as the range of explained variance or the ratio 

of statistically significant iterations, are summarized in Supplementary Table 3.  
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Discussion 

The primary goal of this study was to investigate the relationship between matrix 

reasoning performance and functional connectivity, especially with regard to BAs 

included in the P-FIT network. Our first hypothesis suggested that higher functional 

coherence at rest, quantified as normalized BOLD signal correlations between BAs, 

would lead to higher performance on matrix reasoning tests. The parcellation scheme 

that was utilized for this study delineates a total of 82 BAs for the whole brain with less 

than half of them, namely 31 BAs, constituting the P-FIT network. Given this ratio and 

assuming a completely random distribution of statistically significant connections, one 

would expect 14.00% of these connections to be exclusively constituted by P-FIT BAs, 

38.39% of connections to be completely unrelated to the P-FIT network, and 47.61% 

of connections to involve one P-FIT BA and one unrelated region. However, our data 

revealed a deviating pattern with a strong emphasis on the involvement of P-FIT BAs. 

For sample S498, we identified 31 connections that reached statistical significance 

after correcting for multiple comparisons. Respective connections were exclusively 

constituted by BAs from the P-FIT network in 20 out of 31 cases (64.52%), almost five 

times the expected ratio. Consequentially, statistically significant connections that 

were partially constituted by P-FIT BAs (9 out of 31 cases, 29.03%) or did not have 

any relations to the P-FIT network (2 out of 31 cases, 6.45 %) fell short of their 

expected ratios. Comparable results were revealed by analyzing data from sample 

S991. In total, we identified 43 statistically significant connections, of which the 

majority, namely 17 connections or 39.53%, turned out to be constituted by P-FIT BAs 

exclusively. As with sample S498, connections that were partially constituted by P-FIT 

BAs (15 out of 43 cases, 34.88%) or completely unrelated to the P-FIT network (11 out 

of 43 cases, 25.58%) did not reach their expected ratios. Based on these findings from 

two large and independent datasets, it is fair to say that our first hypothesis could be 
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confirmed. In both samples, statistically significant associations between functional 

connectivity and matrix reasoning performance were predominantly exhibited by 

connections between BAs from the P-FIT network, while connections unrelated to the 

model were of less importance. 

Interestingly, our separate analyses of male and female subsamples revealed patterns 

similar to the entire S498 and S991 samples but only in the female subsamples. While 

we did not observe a single statistically significant result within both male subsamples, 

the female subsample of S498 showed 20 connections (60.61%) that were exclusively 

and 13 connections (39.39%) that were partially constituted by P-FIT BAs. Moreover, 

none of the connections was completely unrelated to the P-FIT network. For the female 

subsample of S991, we found seven connections (53.85%) that were exclusively and 

three connections (23.08%) that were partially constituted by P-FIT BAs as well as 

three connections (23.08%) completely unrelated to the P-FIT network. We did not 

expect the aforementioned shift towards a more pronounced involvement of P-FIT 

connections to be sex-specific. However, this observation is well in line with previous 

reports on divergent neural correlates of matrix reasoning performance in male and 

female individuals. More specifically, Genc et al. (2019) found cortex volume to be the 

best predictor of BOMAT test scores in male individuals, whereas a graph theoretical 

measure of functional resting-state connectivity turned out to be the best predictor in 

female individuals. On the population level, men and women do not show substantial 

differences with regard to their intelligence. However, they can vary considerably in 

particular aspects of their brain anatomy. For example, it is well-known that brain 

volume, which has consistently been reported to be positively associated with 

intelligence (Pietschnig et al., 2015), is 10% larger in men compared to women 

(Ruigrok et al., 2014). Therefore, it is conceivable that female individuals draw on 
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different aspects of their neural substrate, e.g. functional connectivity, in order to 

achieve comparable levels of cognitive performance. 

In view of the replicability of our results, it is important to note that there were five 

statistically significant connections which were present in the S498 as well as the S991 

sample. Two of these connections were entirely constituted by P-FIT areas (BAs 8, 10, 

39, and 47 in the left hemisphere) and the remaining three were comprised of a 

combination between P-FIT areas (BAs 10 and 46 in the left hemisphere) and areas 

unrelated to the P-FIT network (BA 22 in the left and BAs 44 and 45 in the right 

hemisphere). In the following, we would like to elaborate on these particular BAs and 

the cognitive functions usually associated with them. BA 8 is located anterior to the 

premotor cortex an includes the frontal eye fields, which have been related to visual 

attention and eye movements (Schall, 2004). Despite being situated in the frontal 

cortex, which is mainly associated with high-level information processing, BA 8 has 

also been shown to be a quickly activated multimodal region that belongs to a network 

of low-level neocortical sensory areas (Kirchner et al., 2009). Given its involvement in 

visual information processing, functional connections emanating from BA 8 might be 

of importance when working on visually presented problems such as matrix reasoning 

items. In addition to that, there is evidence that functional activation of BA 8 is tied to 

the experience of uncertainty (Volz et al., 2005), which is likely to occur during a matrix 

reasoning test, especially when working on particularly difficult items. BA 10 is the 

anterior-most portion of the prefrontal cortex. In the original meta-analysis by Jung and 

Haier (2007), this area takes a special place in that it approaches a comparatively high 

level of convergence across studies in which structural properties were related to 

intelligence. Our results show that matrix reasoning performance is associated with 

functional connectivity between BAs 10 and 39 but also between BAs 10 and 22. In 

case of the latter pathway, there is histological evidence from a study by Petrides and 
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Pandya (2007), in which it was shown that the rostral prefrontal cortex of macaque 

monkeys exhibits fiber connections to the superior temporal gyrus. With regard to the 

function of BA 10, it has been stated that "hemodynamic changes in area 10 can occur 

during virtually any kind of cognitive paradigm, from the simplest conditioning 

paradigms to the most complex tests" (Burgess et al., 2007). Hence, BA 10 is 

considered to be primarily involved in domain-general functions such as working 

memory (Gilbert et al., 2006) or cognitive branching (Koechlin & Hyafil, 2007). 

Moreover, it has also been hypothesized that BA 10 supports the integration of diverse 

information by attending to both environmental stimuli and self-generated mental 

representations, i.e. thoughts (Burgess et al., 2007). BA 39 encompasses the angular 

gyrus and has been proposed to form an extended Wernicke's area together with BAs 

20, 37, and 38 (Ardila et al., 2016). As part of this language association network, BA 

39 is not involved in core processes of language perception but believed to serve 

additional functions such as associating words with other information. In line with this, 

BA 39 is known to be significantly abnormal in dyslexic dysfunction (Rae et al., 1998; 

Rumsey et al., 1992). Just like BA 10, BA 39 is also among the few brain areas in Jung 

and Haier (2007), which reach a high level of convergence across studies on structural 

correlates of intelligence. BAs 46 and 47 are both situated on the lateral frontal cortex. 

Similar to BAs 10 and 39, BA 46 also approached a high level of convergence across 

studies from Jung and Haier (2007), but in this case with regard to intelligence 

correlates identified by means of positron emission tomography. Complementary to 

BA 39 supporting the perception of language, BAs 46 and 47 are hypothesized to be 

part of a complex frontal-subcortical circuit involved in language production and 

grammar known as Broca's complex (Ardila et al., 2016). Further, BAs 44 and 45 are 

supposed to constitute the core of this complex. Importantly, given that language 

production is usually lateralized to the left hemisphere, especially in right-handed 
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individuals (Ocklenburg et al., 2014), it is somewhat surprising that our analyses 

yielded significant results for left-hemispheric BAs 46 and 47 but right-hemispheric BAs 

44 and 45. As mentioned above, we found BAs 10 and 22 to exhibit a statistically 

significant connection. BA 22 is located in the posterior segment of superior temporal 

gyrus. In the left hemisphere, it constitutes a core Wernicke's area together with BAs 

21, 41, and 42 (Ardila et al., 2016). Taken together, these results indicate that the 

association between matrix reasoning performance and functional connectivity is 

strongly affected by areas involved in language processing (BAs 22, 39, 44, 45, 46, 

47). Language has been considered to be an important cognitive tool for reasoning 

(Varley, 2007). On the one hand, it provides a set of symbols that permits the 

encapsulation and manipulation of abstract notions. On the other hand, its grammatical 

mechanisms allow for relationships between entities to be captured. Furthermore, 

language is crucial for inner speech, which can guide the reasoning process, e.g. by 

breaking down a complex problem into a series of sub-steps. Based on these 

assumptions, the functional connectivity patterns observed in our results might 

represent the following mechanisms potentially underlying matrix reasoning. The 

frontal eye fields encompassed by BA 8 are likely to support the extraction of sensory 

information from a matrix reasoning problem by initiating saccadic eye movements and 

engaging in early visual processing. Respective information might constantly be 

forwarded to language-related areas (BAs 22, 39, 44, 45, 46, 47), in which a verbalized 

mental representation of the problem is formed and used to come up with an adequate 

solution. Moreover, it is conceivable that this process of integrating external visual 

information and internal mental representations is primarily guided by BA 10. By 

subjecting the functional connections comprised in this model to multiple regression 

analysis, we found them to explain about 4% to 6% of variance in matrix reasoning 

performance, depending on the sample we used. In neuroscientific intelligence 
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research, explained variance typically falls into this order of magnitude, given that the 

association between intelligence and its neural correlates is characterized by 

supervenience (many-to-one) rather than isomorphism (one-to-one) (Kievit et al., 

2011; Ritchie et al., 2015). Furthermore, multiple regression analysis revealed that the 

predictive power of our model was higher and more stable for female compared to 

male individuals. As mentioned above, this finding is well in line with previous research 

showing a more pronounced relationship between intelligence and functional 

correlates for female brains and a stronger influence of structural correlates for male 

brains (Genc et al., 2019). 

For the P-FIT model a serial flow of information is assumed with cognitive processing 

proceeding from the occipital and temporal lobes to parietal, frontal, and cingulate 

regions in consecutive order. Thus, we hypothesized that functional connections, 

exhibiting statistically significant associations between their connection strength and 

matrix reasoning performance, should mainly comply to this pattern. Among the five 

functional connections which replicated across both samples, we observed one 

temporal-frontal connection (BA 22 to BA 10), one parietal-frontal connection (BA 39 

to BA 10), and one frontal-frontal connection (BAs 8 to BA 47), all of them in the left 

hemisphere, as well as two interhemispheric frontal-frontal connections (BA 46 to BA 

44 and BA 46 to BA 47). Since the original P-FIT model does not make any 

assumptions with regard to intra- or interhemispherically organized connections within 

the same lobe, we do not consider respective connections to be a violation of the serial 

flow model. Further, the parietal-frontal connection between BAs 39 and 10 in the left 

hemisphere matches the model proposed by P-FIT. In contrast, the temporal-frontal 

connection between BAs 22 and 10 in the left hemisphere is not in line with the serial 

flow model in that it bypasses information exchange with parietal areas. Importantly, 

given that matrix reasoning usually revolves around visually presented information, the 
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involvement of BA 22 is unlikely to stem from the early processing of external auditory 

stimuli. As mentioned above, we consider it to be more feasible that BA 22 is part of a 

language-related network, which enables an individual to use inner speech for the 

purpose of problem solving. In general, our results favor a more parallel flow of 

information with BA 10 utilizing visual information provided by BA 8 to constantly 

update a verbalized mental representation used by language-related areas (BAs 22, 

39, 44, 45, 46, 47). In return, inner speech emerging from the language-related areas 

might guide the extraction of additional visual information by sending feedback to BA 

8. It has to be noted that this model is based on fMRI data that were recorded with 

participants at rest instead of actively solving matrix reasoning problems. Hence, it is 

possible that task-based data might yield slightly different associations between matrix 

reasoning performance and functional connectivity patterns. In addition to that, the 

functional connections yielded by our analyses are based on BOLD signal correlations 

between whole cortical areas. Therefore, they lack information about directionality, 

which makes it hard to interpret respective data with regard to flow of information. A 

possible solution to this problem is to employ fMRI data recorded at a higher magnetic 

field strength, e.g. 7 Tesla. In so doing, one can assess images with a considerably 

higher spatial resolution and obtain information about hemodynamic changes at the 

level of individual cortical layers. According to the canonical model of cortical layer 

connectivity, feedforward activity is found in middle layers, whereas feedback activity 

is located in superficial and/or deep layers, depending on the brain region under 

investigation (Finn et al., 2019; Markov et al., 2013; Sharoh et al., 2019). An even more 

sophisticated approach towards the disentanglement of feedforward and feedback 

information flow involves the analysis of simultaneously recorded data from fMRI and 

electroencephalography (Scheeringa et al., 2016). In combination, these measures 
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would permit direct testing of the serial flow of information model as proposed by Jung 

and Haier (2007). 

Our third hypothesis suggested that the association between functional connectivity 

and matrix reasoning performance is represented by both positive and negative 

correlation coefficients. Although we initially observed both negative and positive 

associations, our third hypothesis had to be rejected since none of the negative 

correlations survived correction for multiple comparisons. All of the statistically 

significant associations that remained, 31 in the S498 sample and 43 in the S991 

sample, were positive. This absence of negative correlations is not in line with previous 

studies, in which inverse relations between measures of functional connectivity and 

intelligence have been reported. For example, Song et al. (2008) observed negative 

correlations between intelligence and functional connectivity exhibited by connections 

linking the left dorsolateral prefrontal cortex to BA 10 of both hemispheres. However, 

when the authors subjected all statistically significant functional connections to a 

stepwise linear analysis, none of the inverse associations were retained in the resulting 

model. Another study by Hilger et al. (2017b), investigated the relationship between 

brain's modular organization and intelligence. In view of between-module connectivity, 

the authors observed negative associations for node clusters in medial superior frontal 

gyrus, left inferior parietal lobule, and bilateral temporo-parietal junction. Furthermore, 

they found intelligence and within-module connectivity to be negatively associated for 

node clusters in right anterior insula, bilateral precentral gyrus, bilateral hippocampi, 

and subcortically in the left caudate nucleus. According to the authors, nodes exhibiting 

negative associations between intelligence and between-module connectivity might 

possess a vital role in shielding ongoing cognitive processes from interfering noise. 

Similarly, nodes showing negative associations between intelligence and within-
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module connectivity might benefit from a more independent and shielded position 

within their own functional module. Generally speaking, negative correlations between  

measures of cognitive performance and functional connectivity are likely to be found 

in brain areas characterized by segregated information processing, i.e. increasing 

signal-to-noise ratio by avoiding unnecessary crosstalk and the exchange of irrelevant 

information (Cohen & D'Esposito, 2016). As opposed to aforementioned research, our 

analyses did not yield any results in support of such mechanisms. These 

inconsistencies between studies might be attributed to differences in the analytical 

approach (whole-brain vs. seed-based, individual BOLD signal correlations vs. graph 

metrics), choice of behavioral variables (matrix reasoning performance vs. general 

intelligence), or size and composition of samples. Notwithstanding the above, it might 

be interesting to see if the use of task-based fMRI data, capturing the brain while 

engaging in information processing, would yield substantially different results 

compared to fMRI resting-state data. 

Within both samples, the vast majority of functional connections, including those 

theoretically nominated by the P-FIT model, did not exhibit statistically significant 

associations between their connectivity strength and matrix reasoning performance. 

To recapitulate, our analyses started out with functional connectivity matrices holding 

information about 3321 individual connections in the form of normalized BOLD signal 

correlations. In order to remove spurious connections, we computed pruned versions 

of these matrices containing merely 401 functional connections. Among these, 121 

were constituted entirely by areas from the P-FIT network, 160 were partially built by 

P-FIT areas, and 120 were completely unrelated to P-FIT. Out of the 281 functional 

connections involving at least one P-FIT area, only 29 connections (10.32%) from 

sample S498 exhibited statistically significant associations between their connectivity 

strength and matrix reasoning performance. For sample S991, we observed 32 
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(11.39%) such connections. In order to arrive at an exact number of functional 

connections theoretically nominated by the P-FIT model, one would have to consider 

only those connections conforming to the serial flow of information model. However, 

even when taking these restrictions into account the ratio between observed and 

potential P-FIT connections would remain fairly low. Hence, the question arises if the 

original version of the P-FIT network should be pruned based on our data. In this 

regard, it has to be noted that the research question tackled in the meta-analysis 

conducted by Jung and Haier (2007) is slightly different from that of our work. While 

the P-FIT model nominates brain areas whose properties, such as task-based 

functional activation, have been consistently associated with intelligence, our study is 

focused on functional brain connections and how their strength is related to matrix 

reasoning performance. In our opinion, it is quite possible that a particular brain area 

is strongly involved in mental problem solving even though it does not show 

intelligence-related functional connectivity, neither during a task nor at rest. 

When comparing the results obtained from both datasets utilized for this study, it has 

to be noted that the statistically significant connections identified for sample S498 do 

not match exactly those in sample S991. In total, we identified 31 statistically significant 

connections in the S498 sample and 43 connections in the S991 sample. However, 

only five of these connections, about 12 to 16 percent, replicated across both samples. 

Although the replication of results across multiple datasets is considered desirable, it 

has to be understood that such efforts are to some extent limited by the substantial 

differences between datasets. The two samples used for the study at hand differed 

with regard to their matrix reasoning tests, sample sizes, image acquisition protocols, 

and preprocessing pipelines. For example, the "advanced short version" of BOMAT, 

which was used for our data acquisition, has more items compared to PMAT24 (29 

instead of 24) and was designed high discriminatory power in mind, especially in 
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samples with generally high intellectual abilities, thus avoiding possible ceiling effects. 

Moreover, our behavioral data acquisition was solely focused on matrix reasoning 

performance, whereas the Human Connectome Project conducted the PMAT24 along 

with a large variety of other tests unrelated to matrix reasoning performance or other 

forms of intelligence. Hence, it is possible that BOMAT test scores provide a slightly 

more precise estimate of matrix reasoning performance compared to PMAT24 test 

scores. However, it has to be noted that the S991 sample comprised about two times 

as many subjects as the S498 sample. Therefore, it is also conceivable that potential 

noise within the behavioral data was mitigated more strongly in the S991 sample due 

to its larger size. Further differences between both samples can be identified in the 

acquisition of fMRI data. Whereas participants from the S498 were told to keep their 

eyes closed during resting-state scans, participants from the S991 sample were 

instructed to keep their eyes open. Effects caused by such differences in instruction 

have been found to be relatively small but significant (Patriat et al., 2013). In our data, 

functional connections involving areas from the primary visual cortex did not show any 

significant associations with matrix reasoning performance in both samples. Likewise, 

both samples exhibited statistically significant functional connections emanating from 

BA 8, which is involved in visual processing since it contains the frontal eye fields. 

Hence, albeit different methods were used to acquire resting-state data, instructing 

participants to keep their eyes closed or open did not cause substantially different 

results between both samples. In addition to said differences in instruction, the 

acquisition time of resting-state data was seven minutes in the S498 sample and 30 

minutes in the S991 sample. Birn et al. (2013) came to the conclusion that the 

intersession reliability of functional connectivity data is significantly increased by 

acquisition time, but only if all functional connections within a network of interest are 

considered. In pruned networks, from which all spurious connections that failed to 
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reach statistical significance are removed, the beneficial effects of longer acquisition 

times begin to plateau at around nine minutes. In following a pruning approach for the 

analysis of our fMRI data, we aimed to diminish the differences in reliability between 

both samples as much as possible. Considering these and other marked differences 

between both samples, it is obvious why we did not find results from sample S498 to 

perfectly match those yielded by sample S991. However, this also renders the findings 

replicating across both samples to be even robust. 

In conclusion, by analyzing data from two independent datasets comprising a total of 

1489 healthy individuals, we were able to identify several functional connections, all of 

them related to the P-FIT network, whose connectivity strength at rest was significantly 

associated with matrix reasoning performance. In previous research, the brain areas 

constituting respective connections have been shown to be primarily involved in 

language processing. Hence, it is conceivable that our results reflect the importance 

of inner speech for solving matrix reasoning tasks or even other intelligence-related 

problems. It might be interesting for future research to take up the approach of our 

study, namely to examine intelligence-related correlates on the level of individual brain 

network connections, and extend it in various ways. For example, one might employ 

other measures of intellectual performance, such as general intelligence, or utilize 

task-based fMRI data recorded while subjects are actively working on cognitively 

demanding problems. In view of functional network construction, it might be beneficial 

to delineate brain images into individual nodes based on functional properties instead 

of anatomical locations or topographic conformations, e.g. by means of hyperalignment 

(Feilong et al., 2018). Furthermore, structural metrics obtained via diffusion-weighted 

imaging might be used as another way of quantifying network connectivity. Lastly, one 

might conduct simultaneous recordings of fMRI and EGG data at ultra-high magnetic 
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field strength in order to reveal the flow of information along functional connections 

relevant for interindividual differences in intellectual performance.  
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Figure Captions 

Figure 1. Methodological sequence for the parcellation of brain scans, the computation 

of resting-state connectivity matrices, and the analysis of associations between 

functional connectivity and matrix reasoning performance. T1-weighted anatomical 

scans (A) were delineated into 41 areas per hemisphere based on the Brodmann atlas 

implemented in FreeSurfer (B). Respective brain masks were linearly transformed into 

the native space of resting-state images (C). For the purpose of creating functional 

connectivity matrices (D), partial correlations between the average BOLD signal 

timecourses of all Brodmann areas were computed. Head movement and average 

BOLD signal timecourses from white matter structures and ventricles were used as 

controlling variables. Pruned versions of these functional connectivity matrices (E) 

were obtained by removing all cells in which correlation coefficients failed to reach 

statistical significance (p < .05) in 90% of subjects across both samples. The remaining 

correlation coefficients were subjected to Fisher z-transformations and employed to 

compute partial correlations with matrix reasoning test scores (F). Head movement 

and age were used as controlling variables. Within the S498 and the S991 sample, 

analyses were carried out for the entirety of subjects and for both sexes separately. 

 

Figure 2. Symmetrical 82-by-82 matrix visualizing the association between functional 

connectivity and matrix reasoning performance for 3321 individual connections in 

sample S498. All cells representing associations that reached statistical significance 

after correction for multiple comparisons are highlighted with black boxes. Significant 

associations replicating across both samples (S498 and S991) are highlighted with 

white boxes. Brodmann areas that belong to the extended P-FIT network are 

highlighted in red. Brodmann areas constituting functional connections significantly 

associated with matrix reasoning performance are framed in black and marked by 
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black half circles. LH = left hemisphere, RH = right hemisphere, BA = Brodmann area, 

MW = medial wall. 

 

Figure 3. Symmetrical 82-by-82 matrix visualizing the association between functional 

connectivity and matrix reasoning performance for 3321 individual connections in 

sample S991. All cells representing associations that reached statistical significance 

after correction for multiple comparisons are highlighted with black boxes. Significant 

associations replicating across both samples (S498 and S991) are highlighted with 

white boxes. Brodmann areas that belong to the extended P-FIT network are 

highlighted in red. Brodmann areas constituting functional connections significantly 

associated with matrix reasoning performance are framed in black and marked by 

black half circles. LH = left hemisphere, RH = right hemisphere, BA = Brodmann area, 

MW = medial wall. 

 

Figure 4. Schematic depiction of functional connections showing statistically 

significant associations with matrix reasoning performance in sample S498. Brodmann 

areas included in the parcellation scheme used for this study are shown as white 

spheres within the semi-transparent MNI brain in the center. Functional connections 

exerting statistically significant correlations between their connectivity strength and 

matrix reasoning performance are shown as white lines. Spheres constituting 

statistically significant connections are slightly bigger than the rest and carry labels 

with the numbers of their corresponding Brodmann areas. Spheres and lines 

representing functional connections which replicated across both samples (S498 and 

S991) are depicted in yellow. Brodmann areas which were involved in statistically 

significant connections in both samples are represented by red spheres. All Brodmann 

areas constituting statistically significant connections are also shown as colored labels 
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on four brain surfaces in the corners (lateral and medial views of the left and right 

hemispheres). 

 

Figure 5. Schematic depiction of functional connections showing statistically 

significant associations with matrix reasoning performance in sample S991. Brodmann 

areas included in the parcellation scheme used for this study are shown as white 

spheres within the semi-transparent MNI brain in the center. Functional connections 

exerting statistically significant correlations between their connectivity strength and 

matrix reasoning performance are shown as white lines. Spheres constituting 

statistically significant connections are slightly bigger than the rest and carry labels 

with the numbers of their corresponding Brodmann areas. Spheres and lines 

representing functional connections which replicated across both samples (S498 and 

S991) are depicted in yellow. Brodmann areas which were involved in statistically 

significant connections in both samples are represented by red spheres. All Brodmann 

areas constituting statistically significant connections are also shown as colored labels 

on four brain surfaces in the corners (lateral and medial views of the left and right 

hemispheres). 


