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FUNCTIONAL CONNECTIVITY IN THE P-FIT NETWORK

Abstract

The Parieto-Frontal Integration Theory (P-FIT) predicts that human intelligence is
closely linked to structural and functional properties of several brain regions mainly
located in the parietal and frontal cortices. It also proposes that solving abstract
reasoning tasks involves multiple processing stages and thus requires the harmonic
interplay of these brain regions. However, empirical studies directly investigating the
relationship between intellectual performance and the strength of individual functional
connections related to the P-FIT network are scarce. Here we demonstrate, in two
independent samples comprising a total of 1489 healthy individuals, that fMRI resting-
state connectivity, especially between P-FIT regions, is associated with interindividual
differences in matrix reasoning performance. Interestingly, respective associations
were only present in the overall samples and the female subsamples but not in the
male subsamples, indicating a sex-specific effect. We found five statistically significant
connections which replicated across both samples. These were constituted by BAs 8,
10, 22, 39, 46, and 47 in the left as well as BAs 44 and 45 in the right hemisphere.
Given that many of these brain regions are predominantly involved in language
processing, we hypothesized that our results reflect the importance of inner speech for
solving matrix reasoning tasks. Complementary to previous research investigating the
association between intelligence and functional brain connectivity by means of
comprehensive network metrics, our study is the first to identify specific connections
from the P-FIT network whose functional connectivity strength at rest can be

considered an indicator of intellectual capability.
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Based on reliable scientific evidence accumulated over the course of more than a
century, it is beyond dispute that individuals differ with regard to their intellectual
abilities (Deary, 2012; Deary et al.,, 2010; Spearman, 1904). Since the dawn of
intelligence research, it has been of considerable interest to establish a link between
intellectual ability and the various properties of its underlying neural substrates within
the human brain. Technical developments during the second half of the 20" century,
such as magnetic resonance imaging and positron emission tomography, enabled
researchers to assess a wide variety of structural and functional brain properties in
vivo and investigate their relationship with intellectual abilities. According to evidence
from this line of research, intelligence has been associated with numerous neural
characteristics including brain volume (McDaniel, 2005; Pietschnig et al., 2015),
cortical thickness (Karama et al., 2011; Narr et al., 2007), white matter integrity (Penke
et al., 2012; Ritchie et al., 2015), structural connectivity (Li et al., 2009), task-based
(Avery et al., 2020; Frith et al., 2021; Haier et al., 1988; Neubauer & Fink, 2009) and
resting-state brain activity (Avery et al., 2020; Ezaki et al., 2020), as well as cortical
microstructure (Genc et al., 2018). In line with the ever-growing arsenal of in vivo
imaging techniques, the focus of neuroscientific approaches to intelligence research
has shifted from the overall brain to single brain regions. However, converging
evidence from a large body of literature indicates that intelligence is not tied to one
particular brain region but related to the anatomical properties and functional activation
patterns of multiple regions spread throughout the brain.

In this regard, Jung and Haier (2007) conducted a review of 37 studies featuring data
obtained by various neuroimaging techniques. Their efforts led to the proposal of the
Parieto-Frontal Integration Theory of intelligence (P-FIT). From the combined
evidence, Jung and Haier identified a set of 14 Brodmann areas (BAs), in which

different neural properties had been consistently linked to intelligence. These were
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mainly located in the dorsolateral prefrontal cortex, in the parietal lobule, in the anterior
cingulate cortex and regions within the temporal and occipital lobes. The authors
assumed that all P-FIT areas, even though they were identified independently of each
other, had to be connected through a widespread network. Jung and Haier emphasized
the fact that solving an abstract reasoning tasks involves multiple processing stages
and thus requires the harmonic interplay of multiple brain regions. In more detail, the
P-FIT model argues that intelligent thinking originates from the successful recognition
and elaboration of information from sensory cortices. Consequentially, extrastriate
cortex (BAs 18, 19) and temporal regions (BAs 21, 37) are hypothesized to be of prime
importance for these first steps. Subsequently, structural symbolism and abstraction
are believed to emerge from the supramarginal (BA 40), the superior parietal (BA 7),
and the angular gyrus (BA 39). Following this, potential solutions to a given problem
are thought be generated in frontal regions (BAs 6, 9, 10, 45, 46, 47) and fed forward
to the anterior cingulate cortex (BA 32), which engages in a final response selection.
This particular set of BAs was partially replicated and extended in a recent meta-
analysis by Basten et al. (2015). They identified six supplementary regions (BAs 8, 20,
24, 31, 42, 44) that were added to the original P-FIT network.

Given our present knowledge about the individual functions of P-FIT regions, it may
seem plausible that they are organized in the network structure proposed by Jung and
Haier (2007). However, this assumption has only been validated indirectly by previous
research. The majority of these studies aimed to investigate the association between
intelligence and functional brain network connectivity by means of fMRI resting-state
data. This approach emanates from the idea that spontaneous fluctuations in the blood
oxygenation level dependent (BOLD) signal contain information about the quality of
evoked brain activity, e.g. mental effort exerted during reasoning (Fox & Raichle, 2007;

Tavor et al., 2016). For example, Song et al. (2008) employed resting-state data to
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relate the functional connectivity strength between bilateral dorsolateral prefrontal
cortices and various other brain regions to general intelligence. The authors observed
multiple statistically significant connections, which were exclusively constituted by BAs
from the extended P-FIT model (BAs 9, 10, 40, 46). In another study, van den Heuvel
et al. (2009) followed a graph theoretical approach in order to investigate the
association between functional brain network properties and intellectual performance.
Results showed a negative correlation between intelligence test scores and the
characteristic path length of the resting-state brain network, indicating that intelligence
is a function of how efficiently information is integrated between multiple brain regions.
Again, these findings were mainly tied to P-FIT areas (BAs 7, 9, 10, 31 39, 40, 44, 45),
albeit with an exploratory statistical threshold. In contrast, Hilger et al. (2017a) were
not able to replicate these findings. With regard to the entire resting-state brain
network, the authors did not observe a significant association between general
intelligence and global efficiency, a graph measure inversely related to characteristic
path length. In view of individual network nodes, three brain areas showed significant
effects but only one of them, namely the dorsal anterior cingulate cortex (BA 32), could
clearly be assigned to the P-FIT model. Yet another study by Hilger et al. (2017b)
employed graph analysis to investigate whether and how the brain’s modular
organization is associated with general intelligence. Again, no significant effects were
found for global modularity features of the resting-state brain network. However, the
authors identified several network nodes, in which between-module and/or within-
module connectivity could be related to general intelligence. The majority of these
nodes comprised areas from the extended P-FIT model (BAs 6, 7, 8, 9, 10, 18, 39, 40,
44, 47). One of the largest studies investigating the association between general
intelligence and global functional network efficiency by means of graph analysis was

conducted by Kruschwitz et al. (2018). The authors employed functional imaging data
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provided by the Human Connectome Project (Van Essen et al., 2013) and used various
network definition schemes to relate measures of general, crystallized, and fluid
intelligence to different global graph metrics, namely global efficiency, characteristic
path length, and global clustering coefficient. Contrary to van den Heuvel et al. (2009),
but in line with Hilger et al. (2017a) and Hilger et al. (2017b), the global approach used
by Kruschwitz et al. (2018) did not yield any robust associations and only very weak
non-significant effects. Using independent component analysis, Vakhtin et al. (2014)
managed to identify a total of 29 functional networks in two independent sets of fMRI
data. The first set was obtained while participants were at rest and the second while
participants were solving a matrix reasoning task. Out of all functional networks, 26
were present in both datasets, supporting the idea that spontaneous fluctuations in the
BOLD signal are informative of task-based brain activity. Notably, 10 functional
networks, which were broadly consistent with the P-FIT model, were correlated with
the matrix reasoning test scores. Santarnecchi, Emmendorfer, Tadayon, et al. (2017)
utilized fMRI resting-state data from a large sample in order to investigate the
properties of a functional network (BAs 6, 7, 9, 10, 18, 32, 40, 46, 47) underlying fluid
intelligence (Santarnecchi, Emmendorfer, & Pascual-Leone, 2017). Results showed
that left inferior frontal (BAs 6, 9) and left inferior parietal regions (BA 40) exerted high
connectivity with the rest of the network, indicating a pivotal role of these P-FIT areas
in fluid intelligence. Furthermore, the authors generated a seed-based connectivity
map between the fluid intelligence network and the rest of the brain. The respective
map exhibited a high degree of similarity with three other major parieto-frontal resting-
state networks. Dubois et al. (2018) investigated the relationship between general
intelligence and functional connectivity by analyzing fMRI resting-state data provided
by the Human Connectome Project (Van Essen et al., 2013). The authors

demonstrated that about 20% of variance in general intelligence can be explained
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when considering the entire connectivity matrix of each participant. When restricting
the analysis to the most predictive edges, particular resting-state networks, namely the
fronto-parietal network, the default mode network, the control network, and the visual
network, turned out to carry more information than others. Respective results were
found to be in general agreement with the P-FIT model. Another study employing the
Human Connectome Project's dataset was conducted by Finn et al. (2015). More
specifically, the authors used fMRI resting-state data recorded on two separate days
to demonstrate that it is possible to match the two connectivity matrices of a participant
with more than 90% accuracy. When restricting this identification procedure to edges
from parieto-frontal regions, accuracy increased to almost 100%. In addition to that,
the authors used the resting-state data to create linear regression models for the
purpose of predicting matrix reasoning performance. Predicted scores were highly
correlated with observed scores. Again, this association was mainly driven by edges
constituting parieto-frontal networks similar to the P-FIT model.

Based on these findings, one can conclude that the general idea of P-FIT areas
constituting a functionally connected network rests on a solid foundation of empirical
evidence. However, none of the aforementioned studies was exclusively targeted at
investigating the association between intelligence and the properties of individual
functional connections from the P-FIT network. Consequentially, previous research is
limited to some extent. For example, Song et al. (2008) refrained from examining a
network spanning the whole brain but focused on functional connectivity emanating
from a priori defined seed regions in the dorsolateral prefrontal cortices. Other studies
used graph theoretical measures in order to quantify functional connectivity (Hilger et
al., 2017a, 2017b; van den Heuvel et al., 2009). Graph theory offers various metrics
which capture the overall quality of a brain network or highlight the importance of

particular nodes that contribute to the network's connectivity. However, these metrics
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are computed by aggregating information from all individual connections constituting
the brain network. Hence, results obtained by this method only provide limited insight
regarding the the properties of individual connections. In many cases (Dubois et al.,
2018; Finn et al.,, 2015; Santarnecchi, Emmendorfer, & Pascual-Leone, 2017;
Santarnecchi, Emmendorfer, Tadayon, et al., 2017), other networks than the P-FIT
network were used as the prime object of investigation and P-FIT was merely used as
the theoretical framework to interpret results, e.g. functional connectivity patterns
observed in parieto-frontal regions. Due to these reasons, it remains unclear whether
intelligence is related to the functional connectivity strength of individual connections
nominated by the P-FIT model.

With the study at hand, we aimed to close this gap of knowledge by testing following
three hypotheses. First, the P-FIT model promotes the idea that brain regions related
to intelligence are organized in a functional network through which information is
exchanged. Based on the research presented above, it is conceivable that efficient
information exchange relies on a brain infrastructure that fosters high functional
coherence between brain regions even in their resting state. Following this assumption,
we hypothesized that higher BOLD signal correlations observed at rest would be
associated with better performance on a matrix reasoning test. Hence, we analyzed
the resting-state properties of functional connections included in the P-FIT network,
but also of those spanning the rest of the brain. We expected significant associations
between functional connectivity strength and matrix reasoning performance to be
predominantly exhibited by connections from the P-FIT network and to a lesser degree
by connections unrelated to the P-FIT model.

Second, Jung and Haier (2007) suggested a serial flow of information through the P-
FIT network when engaging in abstract reasoning. With regard to this concept, we

hypothesized that the majority of connections, expressing significant associations
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between functional connectivity strength and matrix reasoning performance, would
conform to this pattern. In more detail, we expected the trajectory of respective
connections to match one of the steps proposed by the serial flow information model,
i.e. from visual/temporal areas to parietal areas, from parietal areas to frontal areas,
and from frontal areas to the cingulate cortex. Accordingly, we assumed that the
strength of functional connections omitting some of the aforementioned steps, e.g. by
directly linking visual and frontal areas, would not be significantly associated with
matrix reasoning performance or exhibit weaker correlations. In previous research,
functional resting-state correlations have already been used to identify serial flow of
information in the visual system (Genc et al., 2016).

Third, Jung and Haier (2007) did not make any assumptions regarding the absence of
particular functional connections within the P-FIT network. Intellectual performance
can benefit from an exchange of relevant information between brain areas since it has
a positive impact on signal-to-noise ratio. However, it has also been suggested that
mental capacity might be fostered by neural architectures built to filter out or shield
themselves against irrelevant information (Genc et al., 2018). Avoiding unnecessary
crosstalk between specific brain areas might lead to substantial decreases in a
system's level of noise. Respective processes should be represented by negative
correlations between intelligence and the functional connectivity strength between two
brain areas. Given that such inverse relationships have been reported in previous
research (Hilger et al., 2017b; Song et al., 2008), we assumed that they should also
be found for the P-FIT network. Hence, we hypothesized to observe both positive and
negative associations in our analyses.

In order to test these hypotheses, we employed data from two large samples, one
recruited by ourselves and one provided by the Human Connectome Project (Van

Essen et al., 2013). To the best of our knowledge, we present the first study to directly
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examine all possible functional connections from the entire Brodmann atlas in order to
investigate whether matrix reasoning performance is significantly associated with the

functional connectivity strength of individual connections from the P-FIT network.
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Materials and Methods

Participants in the S498 sample

The first sample, hereinafter referred to as sample S498, was recruited at Ruhr-
University Bochum in Germany. Subjects were either paid for their participation or
received course credit. All of them were naive to the purpose of the study and had no
former experience with the administered matrix reasoning test. All participants had
normal or corrected-to-normal vision and hearing, matched the standard inclusion
criteria for fMRI examinations, and declared to have no history of psychiatric or
neurological disorders. Each participant completed both the matrix-reasoning test and
neuroimaging session described below. In total, we recruited 557 participants. Within
this group, 503 participants were right-handed and 54 (9.69%) were left-handed as
measured by the Edinburgh Handedness Inventory (Oldfield, 1971). This ratio is
representative of the human population (Raymond & Pontier, 2004). Given that
handedness has been shown to affect brain organization (Amunts et al., 2000; Amunts
et al., 1996), we decided to exclude all left-handed subjects from our analysis. Within
the remaining group of 503 participants, matrix reasoning test scores were checked
for outliers as defined by Tukey's fences (Tukey, 1977), i.e. observations 1.5
interquartile ranges below the first or above the third quartile, and respective cases
were removed from the dataset accordingly. As a consequence, five participants had
to be excluded. Thus, all of the reported analyses were performed on the remaining
data from 498 participants (245 males) between 18 and 72 years of age (M = 27.41,
SD = 9.37). We utilized G*Power (Faul et al., 2009) in order to compute the achieved
power of our final sample post hoc. The analysis was based on a bivariate normal
model for correlations and an effect size of r = 0.15 since this was about the average
magnitude of correlation coefficients in the S498 sample. We set a to .05 and

determined testing to be two-tailed. Based on these parameters, the analysis yielded
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a statistical power of .92, which indicates sufficient sample size. The study was
approved by the local ethics committee of the Faculty of Psychology at Ruhr-University
Bochum. All participants gave their written informed consent and were treated in

accordance with the declaration of Helsinki.

Participants in the S991 sample

In order to validate the results obtained from the S498 sample, we downloaded data
provided by the Human Connectome Project, namely the S1200 release (Van Essen
et al., 2013). We obtained 1088 participants with data suitable for our analyses from
the "Structural Preprocessed" and "Resting State fMRI 1 Preprocessed" packages. As
with sample S498, we removed all left-handed participants (n = 97, 8.9%) from our
analysis. Matrix reasoning test scores of the remaining participants were checked for
outliers but none were found. Thus, no further participants were excluded and all of the
reported analyses were performed on data from 991 subjects (447 males) between 22
and 36 years of age (M = 28.78, SD = 3.70). Again, we utilized G*Power in order to
compute the statistical power achieved by this sample post hoc. Based on the sample
size of 991 participants and the same parameters used for sample S498, the analysis

resulted in an achieved power that was above .99.

Acquisition of behavioral data in the S498 sample

The acquisition of behavioral data was conducted in a group setting of up to six
participants, seated at individual tables, in a quiet and well-lit room. Matrix reasoning
performance was measured with a German matrix-reasoning test called Bochumer
Matrizentest (BOMAT) (Hossiep et al., 2001), which is widely used in neuroscientific
research (Genc et al., 2018; Klingberg, 2010; Oelhafen et al., 2013). The test examines

non-verbal mental abilities that contribute to intelligence and is similar to Raven's

12



FUNCTIONAL CONNECTIVITY IN THE P-FIT NETWORK

Advanced Progressive Matrices (Raven et al., 2003). We conducted the "advanced
short version" of the BOMAT, which has the advantage of high discriminatory power in
samples with generally high intellectual abilities, thus avoiding possible ceiling effects
(Genc et al., 2018). The BOMAT inventory comprises two parallel test forms (A and B)
with 29 matrix-reasoning items each. Participants had to complete only one of the two
test forms, which were randomly assigned. Split-half reliability of the BOMAT is .89,
Cronbach's a is .92 and parallel-forms reliability between A and B is .86 (Hossiep et
al., 2001). Additionally, convergent and predictive validity are given for both BOMAT
test forms since they are strongly correlated with other intelligence inventories (r = .59),
tests of perceptual speed (r = .51), and German high school GPA (r = -.35) (Hossiep
et al., 2001). The recent norming sample consists of about 2100 individuals with an

age range between 18-60 years and equal sex representation.

Acquisition of behavioral data in the S991 sample

In sample S991, matrix reasoning performance was measured with the Penn Matrix
Analysis Test (PMAT24) (Moore et al., 2015). This instrument is included in the
Computerized Neuropsychological Test Battery provided by the University of
Pennsylvania (PennCNP). The PMAT24 is an abbreviated version of the Raven's
Progressive Matrices and includes 24 items of increasing difficulty. Each matrix pattern
is made up of 2x2, 3x3, or 1x5 arrangements of squares with one of the squares
missing. The participant must pick one of five response choices that best fits the
missing square on the pattern. There is no time limit to the completion of the test,
although the task discontinues if the participant makes five incorrect responses in a
row. The PMAT24 has two test forms of which the Human Connectome Project only

used one (form A) in order to assess matrix reasoning performance.
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Acquisition of imaging data in the S498 sample

All imaging data were acquired at the Bergmannsheil hospital in Bochum (Germany)
using a Philips 3T Achieva scanner with a 32-channel head coil. For the purpose of
segmenting brain scans into gray and white matter segments as well as for the
identification of anatomical landmarks, a T1-weighted high-resolution anatomical
image was acquired (MP-RAGE, TR =8.2 ms, TE = 3.7 ms, flip angle = 8°, 220 slices,
matrix size = 240 x 240, voxel size =1 x 1 x 1 mm). The acquisition time of the
anatomical image was six minutes. For the analysis of functional connectivity, fMRI
resting-state data were acquired using echo planar imaging (TR = 2000 ms, TE = 30
ms, flip angle = 90°, 37 slices, matrix size = 80 x 80, resolution = 3 x 3 x 3 mm).
Participants were instructed to lay still with their eyes closed and to think of nothing in

particular. The acquisition time of the resting-state images was seven minutes.

Acquisition of imaging data in the S991 sample

All imaging data included in the S991 sample were acquired on a customized Siemens
3T Connectome Skyra scanner housed at Washington University in St. Louis using a
standard 32-channel Siemens receive head coil. The Human Connectome Project's
imaging hardware and protocols are documented elaborately in several publications
(Smith et al., 2013; Van Essen et al., 2013; Van Essen et al., 2012) as well as the
reference manual for the S1200 release. Anatomical and functional imaging were
carried out in the same session with a mock scanner practice preceding the anatomical
imaging. A T1-weighted high-resolution anatomical image was acquired by means of
an MP-RAGE sequence and the following parameters: TR = 2400 ms, TE = 2.14 ms,
flip angle = 8°, matrix size = 224 x 224, voxel size = 0.7 x 0.7 x 0.7 mm. The acquisition
time of anatomical imaging was seven minutes and 40 seconds. Functional resting-

state imaging was carried out using multiband accelerated echo planar imaging with a
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multiband factor of eight (TR = 700 ms, TE = 33 ms, flip angle = 52°, 72 slices, matrix
size = 104 x 90, resolution = 2 x 2 x 2 mm). Cardiac and respiratory signals were
recorded at a sampling rate of 400 Hz using a pulse oximeter and respiratory bellows
that were fitted to participants prior to the fMRI scans. In order to prevent the subjects
from falling asleep during scanning, they were asked to keep their eyes open and fixate
on a white cross while thinking of nothing in particular. For each participant, the Human
Connectome Project provides a total of four 15-minute resting-state scans, of which
the first two scans were recorded during the participant's first visit to the scanning site,
while the other two were recorded during the participant's second visit on a separate
day. In order to ensure maximum comparability between the S498 and the S991
samples, we refrained from analyzing imaging data collected on two separate days
and merely included the first two scans provided by the Human Connectome Project.
These two scans were acquired with opposite phase-encoding directions. Total

acquisition time of resting-state fMRI was 30 minutes.

Analysis of imaging data in the S498 sample

In order to reconstruct the cortical surfaces of the T1l-weighted images we used
published surface-based methods in FreeSurfer (http://surfer.nmr.mgh.harvard.edu,
version 5.3.0). The details of this procedure have been described elsewhere (Dale et
al., 1999; Fischl et al., 1999). The automated reconstruction steps included skull
stripping, gray and white matter segmentation as well as reconstruction and inflation
of the cortical surface. After preprocessing, each individual segmentation was quality-
controlled slice by slice and any inaccuracies were corrected by manual editing if
necessary. In addition to gray and white matter masks, FreeSurfer's automated brain
segmentation also yielded various ventricle masks and a cortical parcellation based on

the PALS-B12 atlas (Van Essen, 2005), which in turn is based on the cytoarchitectonic
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areas defined by Brodmann (1909). It has to be noted that there are more sophisticated
parcellation schemes which comprise a substantially higher number of individual brain
regions compared to Brodmann's delineation of the cortex (Genc et al., 2018; Glasser
et al., 2016; Power et al., 2011; Shen et al., 2013). However, since the original P-FIT
model was defined using BAs, we decided to utilize the same segmentation in order to
ensure high comparability between our analyses and the model we wanted to
investigate. The PALS-B12 atlas was provided in the form of annotation files
comprising a total of 82 brain regions that had to be converted to volumetric masks. In
a final step, the two segments delineating the overall cortex and white matter as well
as the ventricle masks and all 82 masks representing single BAs were linearly

transformed into the native space of the resting-state images (Figure 1).

Insert Figure 1 about here

The transformed regions served as anatomical landmarks from which average BOLD
signal timecourses were extracted. Resting-state data were preprocessed using
MELODIC, which is part of the FSL toolbox. The first two EPI volumes were discarded
from each resting-state scan to allow for signal equilibration. Motion and slice-timing
correction as well as high-pass temporal frequency filtering (0.005 Hz) were applied.
In order to avoid spurious correlations in neighboring voxels, spatial smoothing was

not applied.

Analysis of imaging data in the S991 sample
The preprocessing of anatomical and functional data from the S991 sample was
carried out according to the Human Connectome Project's minimal preprocessing

pipelines (Glasser et al., 2013). Importantly, this pipeline also aims to minimize the
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smoothing from interpolation and does not involve any overt volume smoothing. We
applied the same steps as used for the S498 sample in order to generate volumetric
masks, representing overall cortex, white matter, ventricles and BAs, from the T1-
weighted anatomical images. Finally, all respective masks were linearly transformed
into the native space of resting-state images and average BOLD signal timecourses
were extracted. In order to combine our analyses across the two 15-minute runs
obtained for every participant, we followed an approach suggested by the Human
Connectome Project (Smith et al., 2013) and simply concatenated each timeseries
encoded in the right-left direction with its respective counterpart encoded in the left-

right direction.

Statistical analysis

All statistical analyses were carried out using MATLAB version R2020b (The
MathWorks Inc., Natick, MA). For the purpose of generating functional connectivity
matrices and relating them to matrix reasoning test scores, we used linear parametric
methods. Testing was always two-tailed with an a-level of .05, which we eventually
corrected for multiple comparisons using the Benjamini-Hochberg method (Benjamini
& Hochberg, 1995). For every participant we computed partial correlation coefficients
between the average BOLD signal timecourses of all BAs while controlling for several
nuisance variables. We regressed out the trajectories of all six motion parameters as
well as the mean timecourses averaged across voxels representing white matter or
cerebro-spinal fluid (Genc et al., 2016). This resulted in a symmetrical 82-by-82 matrix
for each participant with partial correlation coefficients representing the functional
connectivity of 3321 individual resting-state connections (one matrix triangle without
self-connections on the diagonal). By applying Fisher z-transformation to all values

(Fisher, 1921), we ensured that these partial correlation coefficients were normally
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distributed. In order to remove spurious functional connections from our analyses, we
created a pruned version of each participant's connectivity matrix (Song et al., 2008).
All network edges, i.e. cells containing normalized BOLD signal correlations, that did
not reach statistical significance in 90% of subjects across both samples, were
discarded. Only the remaining portion of each participant's connectivity matrix was
considered for further analyses. In the S498 sample, we computed partial correlation
coefficients between functional connectivity values and BOMAT test scores while
controlling for the effects of age and in-scanner head motion in terms of mean
framewise displacement. In the S991 sample, we proceeded in the same manner but
used PMAT?24 test scores. In both cases, the resulting test statistics were corrected
for multiple comparisons using the Benjamini-Hochberg method. Finally, all functional
connections which exhibited significant associations between their normalized BOLD
signal correlations and the matrix reasoning test scores across both samples were
subjected to multiple regression analysis. Here, normalized BOLD signal correlations
of the selected connections served as independent variables and matrix reasoning test
scores were used as the independent variable. Firstly, single regression models
including all participants of a sample were computed for the S498 and S991 datasets,
respectively. Secondly, regression models based on randomly picked subsamples with
only 75% of subjects were computed in iterative fashion (10000 analyses per group)
and test statistics were averaged across all iterations. We conducted aforementioned
analyses for the entirety of each sample as well as separately for male and female

participants.

Data and code availability
The data and MATLAB code that support the findings of this study are available from

the corresponding author upon reasonable request or can be downloaded from an
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Open Science Framework repository [XXX]. The data used for sample S991 are part
of the S1200 release provided by the Human Connectome Project and can be

accessed via its ConnectomeDB platform [https://db.humanconnectome.org/].
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Results

For sample S498, functional resting-state connectivity exhibited by 3321 individual
connections is illustrated as a symmetrical 82-by-82 matrix in Supplementary Figure
1. The respective matrix was obtained by averaging all individual connectivity matrices
from sample S498. In a subsequent step, potentially spurious functional connections
were removed from each participant's connectivity matrix by discarding all cells in
which normalized BOLD signal correlations failed to reach statistical significance in
90% of subjects across both samples. Thereby, 2920 individual functional connections
were excluded from further analysis and only 401 connections (12.07%) remained
(counting only one triangle of the matrix without self-connections on the diagonal).
Notably, none of the negative correlation coefficients survived this pruning procedure.
For sample S498, the pruned version of the mean connectivity matrix is presented in
Supplementary Figure 2. In order to test whether functional connectivity at rest was
associated with matrix reasoning performance, we correlated the remaining functional
connectivity values with BOMAT test scores, while controlling for the effects of age and

in-scanner head motion (Figure 2).

Insert Figure 2 about here

While the resulting partial correlation coefficients were in the range of -.07 to .19 and
thus indicated both negative and positive associations, the majority of associations
was positive (364 out of 401, 90.77%). After correcting for multiple comparisons, the
partial correlation coefficients in 31 functional connections still reached statistical
significance (7.73%, r = .13 to .19). Twenty out of these 31 connections were
exclusively constituted of BAs from the P-FIT network (64.52%). Nine connections ran

between a BA from the P-FIT network and a BA unrelated to P-FIT (29.03%). Out of
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all connections for which functional connectivity was significantly associated with
BOMAT test scores, we only observed two that did not involve at least one BA from
the P-FIT network (6.45%). Altogether, we identified 15 intrahemispheric connections
in the left hemisphere (48.39%), six intrahemispheric connections in the right

hemisphere (19.35%), and 10 interhemispheric connections (32.26%) (Figure 3).

Insert Figure 3 about here

Data from the S991 sample were analyzed in accordance with the approach followed
for the S498 sample. Again, functional connectivity between BAs is illustrated by
symmetrical 82-by-82 matrices, one representing the entire network (Supplementary
Figure 3) and one representing its pruned version (Supplementary Figure 4). For each
of the 401 individual connections in sample S991 functional connectivity values were
correlated with PMAT24 test scores, while controlling for the effects of age and in-

scanner head motion (Figure 4).

Insert Figure 4 about here

As with sample 498, the resulting partial correlation coefficients indicated both negative
and positive associations, this time in the range of -.05 to .15. Further, the number of
connections expressing positive associations between functional connectivity and
PMAT?24 test scores (337 out of 401, 84.04%) was comparable to the S498 sample.
Forty-three of these partial correlation coefficients, all of them positive, survived a
correction for multiple comparisons and still reached statistical significance (10.72%, r
= .09 to .15). As with sample S498, most statistically significant connections were
exclusively constituted of BAs from the P-FIT network (17 out of 43, 39.53%). We found

15 statistically significant connections which ran between one BA from the P-FIT
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network and one unrelated BA (34.88%). Lastly, we observed 11 statistically significant
connections between BAs completely unrelated to the P-FIT network (25.58%). The
43 statistically significant connections included 12 intrahemispheric connections in the
left hemisphere (27.91%), 11 intrahemispheric connections in the right hemisphere

(25.58%), and 20 interhemispheric connections (46.51%) (Figure 5).

Insert Figure 5 about here

Five statistically significant connections were present in both samples. Among these
were three intrahemispheric connections in the left hemisphere, namely one between
BAs 8 and 47 (S498:r=.14, p <.01; S991: r=.09, p < .01), one between BAs 10 and
22 (S498:r=.15, p<.001; S991:r = .13, p <.001), and one between BAs 10 and 39
(S498: r = .14, p < .01; S991: r = .12, p < .001). Moreover, there were two
interhemispheric connections, namely one between BA 46 in the left and BA 44 in the
right hemisphere (S498:r=.17, p <.001; S991:r=.10, p <.01) as well as one between
BA 46 in the left and BA 45 in the right hemisphere (S498: r = .14, p <.01; S991: r =
.09, p <.01). The connections between BAs 8 and 47 as well as BAs 10 and 39 were
exclusively constituted by areas nominated by the P-FIT model, whereas each of the
remaining three connections included one related (BAs 10, 46) and one unrelated area
(BAs 22, 44, 45). In addition to the five connections which replicated across both
samples, we also found 22 BAs that constituted statistically significant connections in
both samples. Within the left hemisphere, 11 (50.00%) of these were related to the P-
FIT model (BAs 6, 7, 8, 9, 10, 21, 39, 40, 42, 46, 47) and two (9.09%) were not (BAs
4, 22). Within the right hemisphere, four (18.18%) were related to the P-FIT model

(BAs 9, 32, 40, 46) and five (22.73%) were not (BAs 22, 42, 43, 44, 45).
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Subsequent to examining the entire samples, we also conducted aforementioned
analyses for male and female participants separately. Within both male subsamples,
we did not observe a single statistically significant association between functional
connectivity and matrix reasoning performance after applying correction for multiple
comparisons. In contrast, we found 33 partial correlation coefficients that reached
statistical significance in the female subsample of S498 (8.23%, r = .18 to .29)
(Supplementary Figure 5). As with the entire sample, the majority of connections was
exclusively constituted by BAs from the P-FIT network (20 out of 33, 60.61%). Further,
13 connections included one BA from the P-FIT network and one unrelated BA
(39.39%), while no connection was completely unrelated to the P-FIT network. The
overall set of significant connections included 11 intrahemispheric connections in the
left hemisphere (33.33%), seven intrahemispheric connections in the right hemisphere
(21.21%), and 15 interhemispheric connections (45.45%) (Supplementary Figure 6).
Within the female subsample of S991, we identified 13 functional connections which
exhibited statistically significant associations between functional connectivity and
PMAT24 test scores (3.24%, r = .14 t0 .17) (Supplementary Figure 7). We found seven
of these connections to be entirely constituted by P-FIT areas (53.85%), three
connections to be partly constituted by P-FIT areas (23.08%), and three connections
to be constituted by BAs that were entirely unrelated to the P-FIT network (23.08%).
In view of the general trajectories of these statically significant connections, we
observed six intrahemispheric connections in the left hemisphere (46.15%), two
intrahemispheric connections in the right hemisphere (15.38%), and five
interhemispheric connections (38.46%) (Supplementary Figure 8). Two of the 33
statistically significant connections in the female subsample of S498 were also present
among the 13 connections in the female subsample of S991. One of them was an

intrahemispheric connection already observed for the entire samples, namely that
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between left hemispheric BAs 8 and 47 (S498: r =.18, p<.01; S991:r = .15, p <.001).
The other was an interhemispheric connection between BA 42 in the left and BA 22 in
the right hemisphere (S498: r = .19, p < .01; S991: r = .14, p < .001). In addition, we
also identified 12 BAs that constituted statistically significant connections in the female
subsamples of S498 and S991. All of the six BAs within the left hemisphere (50.00%)
were related to the P-FIT model (BAs 8, 10, 40, 42, 46, 47). Within the right
hemisphere, three BAs (25.00%) were related to the P-FIT model (BAs 10, 40, 46) and
three (25.00%) were not (BAs 22, 44, 45).

In order to further examine the five statistically significant connections which replicated
across both samples, we conducted various multiple regression analyses. For the
respective regression models, the normalized BOLD signal correlations exhibited by
aforementioned five connections were used as independent variables. In the S498
sample (Supplementary Table 1), BOMAT test scores served as the dependent
variable, whereas PMAT?24 test scores were used as the dependent variable in the
S991 sample (Supplementary Table 2). All following results refer to the adjusted R? of
respective regression models. When utilizing data from the entire samples, the
regression model of sample S498 was able to explain 4.60% of variance in matrix
reasoning performance and that of sample S991 yielded 3.35% of explained variance.
Both models were found to be highly significant (p < .001). Moreover, the functional
connection between BA 46 in the left and BA 44 in the right hemisphere exhibited the
highest unique contribution towards predicting matrix reasoning performance in both
samples (S498: B = 0.12, p <.05; S991: 3 = 0.16, p < .05).

Subsequent to the analysis of the entire samples, we computed aforementioned
models separately for both sexes using only data from the male and female
subsamples, respectively. The model based on the male subsample of S498 explained

less variance compared to the overall sample's model and did not reach statistical
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significance (R%adj = 2.20%, p = .066). In contrast, explained variance was highest in
the model based on the female subsample, which also turned out to be highly
significant (R%dj = 7.23%, p < .001). Results showed a similar pattern for the S991
sample. Here, both models reached statistical significance, but the male subsample's
model (R?%adj = 1.96%, p < .05) explained less variance in matrix reasoning performance
compared to the overall sample's model and the female subsample's model (RZ%adj =
3.94%, p < .001).

In a last step, we computed all of the aforementioned regression models with randomly
picked subsamples including only 75% of participants. For each of the entire samples
as well as their male and female subsample's, we computed 10000 iterations of the
respective model and averaged relevant test statistics. In so doing, we found that mean
explained variance was highest in regression models based on female subsamples
(S498: R?adj mean = 7.21%; S991: RZ?adj mean = 3.99%), followed by models based on
entire samples (S498: RZadj mean = 4.59%; S991: RZagj mean = 3.36%), followed by
models based on male subsamples (S498: RZadj mean = 2.24%; S991: RZdj mean =
1.96%). Additional test statistics, such as the range of explained variance or the ratio

of statistically significant iterations, are summarized in Supplementary Table 3.

25



FUNCTIONAL CONNECTIVITY IN THE P-FIT NETWORK

Discussion

The primary goal of this study was to investigate the relationship between matrix
reasoning performance and functional connectivity, especially with regard to BAs
included in the P-FIT network. Our first hypothesis suggested that higher functional
coherence at rest, quantified as normalized BOLD signal correlations between BAS,
would lead to higher performance on matrix reasoning tests. The parcellation scheme
that was utilized for this study delineates a total of 82 BAs for the whole brain with less
than half of them, namely 31 BAs, constituting the P-FIT network. Given this ratio and
assuming a completely random distribution of statistically significant connections, one
would expect 14.00% of these connections to be exclusively constituted by P-FIT BAs,
38.39% of connections to be completely unrelated to the P-FIT network, and 47.61%
of connections to involve one P-FIT BA and one unrelated region. However, our data
revealed a deviating pattern with a strong emphasis on the involvement of P-FIT BAs.
For sample S498, we identified 31 connections that reached statistical significance
after correcting for multiple comparisons. Respective connections were exclusively
constituted by BAs from the P-FIT network in 20 out of 31 cases (64.52%), almost five
times the expected ratio. Consequentially, statistically significant connections that
were partially constituted by P-FIT BAs (9 out of 31 cases, 29.03%) or did not have
any relations to the P-FIT network (2 out of 31 cases, 6.45 %) fell short of their
expected ratios. Comparable results were revealed by analyzing data from sample
S991. In total, we identified 43 statistically significant connections, of which the
majority, namely 17 connections or 39.53%, turned out to be constituted by P-FIT BAs
exclusively. As with sample S498, connections that were partially constituted by P-FIT
BAs (15 out of 43 cases, 34.88%) or completely unrelated to the P-FIT network (11 out
of 43 cases, 25.58%) did not reach their expected ratios. Based on these findings from

two large and independent datasets, it is fair to say that our first hypothesis could be
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confirmed. In both samples, statistically significant associations between functional
connectivity and matrix reasoning performance were predominantly exhibited by
connections between BAs from the P-FIT network, while connections unrelated to the
model were of less importance.

Interestingly, our separate analyses of male and female subsamples revealed patterns
similar to the entire S498 and S991 samples but only in the female subsamples. While
we did not observe a single statistically significant result within both male subsamples,
the female subsample of S498 showed 20 connections (60.61%) that were exclusively
and 13 connections (39.39%) that were partially constituted by P-FIT BAs. Moreover,
none of the connections was completely unrelated to the P-FIT network. For the female
subsample of S991, we found seven connections (53.85%) that were exclusively and
three connections (23.08%) that were partially constituted by P-FIT BAs as well as
three connections (23.08%) completely unrelated to the P-FIT network. We did not
expect the aforementioned shift towards a more pronounced involvement of P-FIT
connections to be sex-specific. However, this observation is well in line with previous
reports on divergent neural correlates of matrix reasoning performance in male and
female individuals. More specifically, Genc et al. (2019) found cortex volume to be the
best predictor of BOMAT test scores in male individuals, whereas a graph theoretical
measure of functional resting-state connectivity turned out to be the best predictor in
female individuals. On the population level, men and women do not show substantial
differences with regard to their intelligence. However, they can vary considerably in
particular aspects of their brain anatomy. For example, it is well-known that brain
volume, which has consistently been reported to be positively associated with
intelligence (Pietschnig et al., 2015), is 10% larger in men compared to women

(Ruigrok et al., 2014). Therefore, it is conceivable that female individuals draw on
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different aspects of their neural substrate, e.g. functional connectivity, in order to
achieve comparable levels of cognitive performance.

In view of the replicability of our results, it is important to note that there were five
statistically significant connections which were present in the S498 as well as the S991
sample. Two of these connections were entirely constituted by P-FIT areas (BAs 8, 10,
39, and 47 in the left hemisphere) and the remaining three were comprised of a
combination between P-FIT areas (BAs 10 and 46 in the left hemisphere) and areas
unrelated to the P-FIT network (BA 22 in the left and BAs 44 and 45 in the right
hemisphere). In the following, we would like to elaborate on these particular BAs and
the cognitive functions usually associated with them. BA 8 is located anterior to the
premotor cortex an includes the frontal eye fields, which have been related to visual
attention and eye movements (Schall, 2004). Despite being situated in the frontal
cortex, which is mainly associated with high-level information processing, BA 8 has
also been shown to be a quickly activated multimodal region that belongs to a network
of low-level neocortical sensory areas (Kirchner et al., 2009). Given its involvement in
visual information processing, functional connections emanating from BA 8 might be
of importance when working on visually presented problems such as matrix reasoning
items. In addition to that, there is evidence that functional activation of BA 8 is tied to
the experience of uncertainty (Volz et al., 2005), which is likely to occur during a matrix
reasoning test, especially when working on particularly difficult items. BA 10 is the
anterior-most portion of the prefrontal cortex. In the original meta-analysis by Jung and
Haier (2007), this area takes a special place in that it approaches a comparatively high
level of convergence across studies in which structural properties were related to
intelligence. Our results show that matrix reasoning performance is associated with
functional connectivity between BAs 10 and 39 but also between BAs 10 and 22. In

case of the latter pathway, there is histological evidence from a study by Petrides and
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Pandya (2007), in which it was shown that the rostral prefrontal cortex of macaque
monkeys exhibits fiber connections to the superior temporal gyrus. With regard to the
function of BA 10, it has been stated that "hnemodynamic changes in area 10 can occur
during virtually any kind of cognitive paradigm, from the simplest conditioning
paradigms to the most complex tests" (Burgess et al., 2007). Hence, BA 10 is
considered to be primarily involved in domain-general functions such as working
memory (Gilbert et al., 2006) or cognitive branching (Koechlin & Hyafil, 2007).
Moreover, it has also been hypothesized that BA 10 supports the integration of diverse
information by attending to both environmental stimuli and self-generated mental
representations, i.e. thoughts (Burgess et al., 2007). BA 39 encompasses the angular
gyrus and has been proposed to form an extended Wernicke's area together with BAs
20, 37, and 38 (Ardila et al., 2016). As part of this language association network, BA
39 is not involved in core processes of language perception but believed to serve
additional functions such as associating words with other information. In line with this,
BA 39 is known to be significantly abnormal in dyslexic dysfunction (Rae et al., 1998;
Rumsey et al., 1992). Just like BA 10, BA 39 is also among the few brain areas in Jung
and Haier (2007), which reach a high level of convergence across studies on structural
correlates of intelligence. BAs 46 and 47 are both situated on the lateral frontal cortex.
Similar to BAs 10 and 39, BA 46 also approached a high level of convergence across
studies from Jung and Haier (2007), but in this case with regard to intelligence
correlates identified by means of positron emission tomography. Complementary to
BA 39 supporting the perception of language, BAs 46 and 47 are hypothesized to be
part of a complex frontal-subcortical circuit involved in language production and
grammar known as Broca's complex (Ardila et al., 2016). Further, BAs 44 and 45 are
supposed to constitute the core of this complex. Importantly, given that language

production is usually lateralized to the left hemisphere, especially in right-handed
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individuals (Ocklenburg et al., 2014), it is somewhat surprising that our analyses
yielded significant results for left-hemispheric BAs 46 and 47 but right-hemispheric BAs
44 and 45. As mentioned above, we found BAs 10 and 22 to exhibit a statistically
significant connection. BA 22 is located in the posterior segment of superior temporal
gyrus. In the left hemisphere, it constitutes a core Wernicke's area together with BAs
21, 41, and 42 (Ardila et al., 2016). Taken together, these results indicate that the
association between matrix reasoning performance and functional connectivity is
strongly affected by areas involved in language processing (BAs 22, 39, 44, 45, 46,
47). Language has been considered to be an important cognitive tool for reasoning
(Varley, 2007). On the one hand, it provides a set of symbols that permits the
encapsulation and manipulation of abstract notions. On the other hand, its grammatical
mechanisms allow for relationships between entities to be captured. Furthermore,
language is crucial for inner speech, which can guide the reasoning process, e.g. by
breaking down a complex problem into a series of sub-steps. Based on these
assumptions, the functional connectivity patterns observed in our results might
represent the following mechanisms potentially underlying matrix reasoning. The
frontal eye fields encompassed by BA 8 are likely to support the extraction of sensory
information from a matrix reasoning problem by initiating saccadic eye movements and
engaging in early visual processing. Respective information might constantly be
forwarded to language-related areas (BAs 22, 39, 44, 45, 46, 47), in which a verbalized
mental representation of the problem is formed and used to come up with an adequate
solution. Moreover, it is conceivable that this process of integrating external visual
information and internal mental representations is primarily guided by BA 10. By
subjecting the functional connections comprised in this model to multiple regression
analysis, we found them to explain about 4% to 6% of variance in matrix reasoning

performance, depending on the sample we used. In neuroscientific intelligence
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research, explained variance typically falls into this order of magnitude, given that the
association between intelligence and its neural correlates is characterized by
supervenience (many-to-one) rather than isomorphism (one-to-one) (Kievit et al.,
2011; Ritchie et al., 2015). Furthermore, multiple regression analysis revealed that the
predictive power of our model was higher and more stable for female compared to
male individuals. As mentioned above, this finding is well in line with previous research
showing a more pronounced relationship between intelligence and functional
correlates for female brains and a stronger influence of structural correlates for male
brains (Genc et al., 2019).

For the P-FIT model a serial flow of information is assumed with cognitive processing
proceeding from the occipital and temporal lobes to parietal, frontal, and cingulate
regions in consecutive order. Thus, we hypothesized that functional connections,
exhibiting statistically significant associations between their connection strength and
matrix reasoning performance, should mainly comply to this pattern. Among the five
functional connections which replicated across both samples, we observed one
temporal-frontal connection (BA 22 to BA 10), one parietal-frontal connection (BA 39
to BA 10), and one frontal-frontal connection (BAs 8 to BA 47), all of them in the left
hemisphere, as well as two interhemispheric frontal-frontal connections (BA 46 to BA
44 and BA 46 to BA 47). Since the original P-FIT model does not make any
assumptions with regard to intra- or interhemispherically organized connections within
the same lobe, we do not consider respective connections to be a violation of the serial
flow model. Further, the parietal-frontal connection between BAs 39 and 10 in the left
hemisphere matches the model proposed by P-FIT. In contrast, the temporal-frontal
connection between BAs 22 and 10 in the left hemisphere is not in line with the serial
flow model in that it bypasses information exchange with parietal areas. Importantly,

given that matrix reasoning usually revolves around visually presented information, the
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involvement of BA 22 is unlikely to stem from the early processing of external auditory
stimuli. As mentioned above, we consider it to be more feasible that BA 22 is part of a
language-related network, which enables an individual to use inner speech for the
purpose of problem solving. In general, our results favor a more parallel flow of
information with BA 10 utilizing visual information provided by BA 8 to constantly
update a verbalized mental representation used by language-related areas (BAs 22,
39, 44, 45, 46, 47). In return, inner speech emerging from the language-related areas
might guide the extraction of additional visual information by sending feedback to BA
8. It has to be noted that this model is based on fMRI data that were recorded with
participants at rest instead of actively solving matrix reasoning problems. Hence, it is
possible that task-based data might yield slightly different associations between matrix
reasoning performance and functional connectivity patterns. In addition to that, the
functional connections yielded by our analyses are based on BOLD signal correlations
between whole cortical areas. Therefore, they lack information about directionality,
which makes it hard to interpret respective data with regard to flow of information. A
possible solution to this problem is to employ fMRI data recorded at a higher magnetic
field strength, e.g. 7 Tesla. In so doing, one can assess images with a considerably
higher spatial resolution and obtain information about hemodynamic changes at the
level of individual cortical layers. According to the canonical model of cortical layer
connectivity, feedforward activity is found in middle layers, whereas feedback activity
is located in superficial and/or deep layers, depending on the brain region under
investigation (Finn et al., 2019; Markov et al., 2013; Sharoh et al., 2019). An even more
sophisticated approach towards the disentanglement of feedforward and feedback
information flow involves the analysis of simultaneously recorded data from fMRI and

electroencephalography (Scheeringa et al., 2016). In combination, these measures

32



FUNCTIONAL CONNECTIVITY IN THE P-FIT NETWORK

would permit direct testing of the serial flow of information model as proposed by Jung
and Haier (2007).

Our third hypothesis suggested that the association between functional connectivity
and matrix reasoning performance is represented by both positive and negative
correlation coefficients. Although we initially observed both negative and positive
associations, our third hypothesis had to be rejected since none of the negative
correlations survived correction for multiple comparisons. All of the statistically
significant associations that remained, 31 in the S498 sample and 43 in the S991
sample, were positive. This absence of negative correlations is not in line with previous
studies, in which inverse relations between measures of functional connectivity and
intelligence have been reported. For example, Song et al. (2008) observed negative
correlations between intelligence and functional connectivity exhibited by connections
linking the left dorsolateral prefrontal cortex to BA 10 of both hemispheres. However,
when the authors subjected all statistically significant functional connections to a
stepwise linear analysis, none of the inverse associations were retained in the resulting
model. Another study by Hilger et al. (2017b), investigated the relationship between
brain's modular organization and intelligence. In view of between-module connectivity,
the authors observed negative associations for node clusters in medial superior frontal
gyrus, left inferior parietal lobule, and bilateral temporo-parietal junction. Furthermore,
they found intelligence and within-module connectivity to be negatively associated for
node clusters in right anterior insula, bilateral precentral gyrus, bilateral hippocampi,
and subcortically in the left caudate nucleus. According to the authors, nodes exhibiting
negative associations between intelligence and between-module connectivity might
possess a vital role in shielding ongoing cognitive processes from interfering noise.

Similarly, nodes showing negative associations between intelligence and within-
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module connectivity might benefit from a more independent and shielded position
within their own functional module. Generally speaking, negative correlations between
measures of cognitive performance and functional connectivity are likely to be found
in brain areas characterized by segregated information processing, i.e. increasing
signal-to-noise ratio by avoiding unnecessary crosstalk and the exchange of irrelevant
information (Cohen & D'Esposito, 2016). As opposed to aforementioned research, our
analyses did not yield any results in support of such mechanisms. These
inconsistencies between studies might be attributed to differences in the analytical
approach (whole-brain vs. seed-based, individual BOLD signal correlations vs. graph
metrics), choice of behavioral variables (matrix reasoning performance vs. general
intelligence), or size and composition of samples. Notwithstanding the above, it might
be interesting to see if the use of task-based fMRI data, capturing the brain while
engaging in information processing, would vyield substantially different results
compared to fMRI resting-state data.

Within both samples, the vast majority of functional connections, including those
theoretically nominated by the P-FIT model, did not exhibit statistically significant
associations between their connectivity strength and matrix reasoning performance.
To recapitulate, our analyses started out with functional connectivity matrices holding
information about 3321 individual connections in the form of normalized BOLD signal
correlations. In order to remove spurious connections, we computed pruned versions
of these matrices containing merely 401 functional connections. Among these, 121
were constituted entirely by areas from the P-FIT network, 160 were partially built by
P-FIT areas, and 120 were completely unrelated to P-FIT. Out of the 281 functional
connections involving at least one P-FIT area, only 29 connections (10.32%) from
sample S498 exhibited statistically significant associations between their connectivity

strength and matrix reasoning performance. For sample S991, we observed 32
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(11.39%) such connections. In order to arrive at an exact number of functional
connections theoretically nominated by the P-FIT model, one would have to consider
only those connections conforming to the serial flow of information model. However,
even when taking these restrictions into account the ratio between observed and
potential P-FIT connections would remain fairly low. Hence, the question arises if the
original version of the P-FIT network should be pruned based on our data. In this
regard, it has to be noted that the research question tackled in the meta-analysis
conducted by Jung and Haier (2007) is slightly different from that of our work. While
the P-FIT model nominates brain areas whose properties, such as task-based
functional activation, have been consistently associated with intelligence, our study is
focused on functional brain connections and how their strength is related to matrix
reasoning performance. In our opinion, it is quite possible that a particular brain area
is strongly involved in mental problem solving even though it does not show
intelligence-related functional connectivity, neither during a task nor at rest.

When comparing the results obtained from both datasets utilized for this study, it has
to be noted that the statistically significant connections identified for sample S498 do
not match exactly those in sample S991. In total, we identified 31 statistically significant
connections in the S498 sample and 43 connections in the S991 sample. However,
only five of these connections, about 12 to 16 percent, replicated across both samples.
Although the replication of results across multiple datasets is considered desirable, it
has to be understood that such efforts are to some extent limited by the substantial
differences between datasets. The two samples used for the study at hand differed
with regard to their matrix reasoning tests, sample sizes, image acquisition protocols,
and preprocessing pipelines. For example, the "advanced short version" of BOMAT,
which was used for our data acquisition, has more items compared to PMAT24 (29

instead of 24) and was designed high discriminatory power in mind, especially in
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samples with generally high intellectual abilities, thus avoiding possible ceiling effects.
Moreover, our behavioral data acquisition was solely focused on matrix reasoning
performance, whereas the Human Connectome Project conducted the PMAT24 along
with a large variety of other tests unrelated to matrix reasoning performance or other
forms of intelligence. Hence, it is possible that BOMAT test scores provide a slightly
more precise estimate of matrix reasoning performance compared to PMAT24 test
scores. However, it has to be noted that the S991 sample comprised about two times
as many subjects as the S498 sample. Therefore, it is also conceivable that potential
noise within the behavioral data was mitigated more strongly in the S991 sample due
to its larger size. Further differences between both samples can be identified in the
acquisition of fMRI data. Whereas participants from the S498 were told to keep their
eyes closed during resting-state scans, participants from the S991 sample were
instructed to keep their eyes open. Effects caused by such differences in instruction
have been found to be relatively small but significant (Patriat et al., 2013). In our data,
functional connections involving areas from the primary visual cortex did not show any
significant associations with matrix reasoning performance in both samples. Likewise,
both samples exhibited statistically significant functional connections emanating from
BA 8, which is involved in visual processing since it contains the frontal eye fields.
Hence, albeit different methods were used to acquire resting-state data, instructing
participants to keep their eyes closed or open did not cause substantially different
results between both samples. In addition to said differences in instruction, the
acquisition time of resting-state data was seven minutes in the S498 sample and 30
minutes in the S991 sample. Birn et al. (2013) came to the conclusion that the
intersession reliability of functional connectivity data is significantly increased by
acquisition time, but only if all functional connections within a network of interest are

considered. In pruned networks, from which all spurious connections that failed to
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reach statistical significance are removed, the beneficial effects of longer acquisition
times begin to plateau at around nine minutes. In following a pruning approach for the
analysis of our fMRI data, we aimed to diminish the differences in reliability between
both samples as much as possible. Considering these and other marked differences
between both samples, it is obvious why we did not find results from sample S498 to
perfectly match those yielded by sample S991. However, this also renders the findings
replicating across both samples to be even robust.

In conclusion, by analyzing data from two independent datasets comprising a total of
1489 healthy individuals, we were able to identify several functional connections, all of
them related to the P-FIT network, whose connectivity strength at rest was significantly
associated with matrix reasoning performance. In previous research, the brain areas
constituting respective connections have been shown to be primarily involved in
language processing. Hence, it is conceivable that our results reflect the importance
of inner speech for solving matrix reasoning tasks or even other intelligence-related
problems. It might be interesting for future research to take up the approach of our
study, namely to examine intelligence-related correlates on the level of individual brain
network connections, and extend it in various ways. For example, one might employ
other measures of intellectual performance, such as general intelligence, or utilize
task-based fMRI data recorded while subjects are actively working on cognitively
demanding problems. In view of functional network construction, it might be beneficial
to delineate brain images into individual nodes based on functional properties instead
of anatomical locations or topographic conformations, e.g. by means of hyperalignment
(Feilong et al., 2018). Furthermore, structural metrics obtained via diffusion-weighted
imaging might be used as another way of quantifying network connectivity. Lastly, one

might conduct simultaneous recordings of fMRI and EGG data at ultra-high magnetic

37



FUNCTIONAL CONNECTIVITY IN THE P-FIT NETWORK

field strength in order to reveal the flow of information along functional connections

relevant for interindividual differences in intellectual performance.
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Figure Captions

Figure 1. Methodological sequence for the parcellation of brain scans, the computation
of resting-state connectivity matrices, and the analysis of associations between
functional connectivity and matrix reasoning performance. T1-weighted anatomical
scans (A) were delineated into 41 areas per hemisphere based on the Brodmann atlas
implemented in FreeSurfer (B). Respective brain masks were linearly transformed into
the native space of resting-state images (C). For the purpose of creating functional
connectivity matrices (D), partial correlations between the average BOLD signal
timecourses of all Brodmann areas were computed. Head movement and average
BOLD signal timecourses from white matter structures and ventricles were used as
controlling variables. Pruned versions of these functional connectivity matrices (E)
were obtained by removing all cells in which correlation coefficients failed to reach
statistical significance (p <.05) in 90% of subjects across both samples. The remaining
correlation coefficients were subjected to Fisher z-transformations and employed to
compute partial correlations with matrix reasoning test scores (F). Head movement
and age were used as controlling variables. Within the S498 and the S991 sample,

analyses were carried out for the entirety of subjects and for both sexes separately.

Figure 2. Symmetrical 82-by-82 matrix visualizing the association between functional
connectivity and matrix reasoning performance for 3321 individual connections in
sample S498. All cells representing associations that reached statistical significance
after correction for multiple comparisons are highlighted with black boxes. Significant
associations replicating across both samples (S498 and S991) are highlighted with
white boxes. Brodmann areas that belong to the extended P-FIT network are
highlighted in red. Brodmann areas constituting functional connections significantly

associated with matrix reasoning performance are framed in black and marked by
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black half circles. LH = left hemisphere, RH = right hemisphere, BA = Brodmann area,

MW = medial wall.

Figure 3. Symmetrical 82-by-82 matrix visualizing the association between functional
connectivity and matrix reasoning performance for 3321 individual connections in
sample S991. All cells representing associations that reached statistical significance
after correction for multiple comparisons are highlighted with black boxes. Significant
associations replicating across both samples (S498 and S991) are highlighted with
white boxes. Brodmann areas that belong to the extended P-FIT network are
highlighted in red. Brodmann areas constituting functional connections significantly
associated with matrix reasoning performance are framed in black and marked by
black half circles. LH = left hemisphere, RH = right hemisphere, BA = Brodmann area,

MW = medial wall.

Figure 4. Schematic depiction of functional connections showing statistically
significant associations with matrix reasoning performance in sample S498. Brodmann
areas included in the parcellation scheme used for this study are shown as white
spheres within the semi-transparent MNI brain in the center. Functional connections
exerting statistically significant correlations between their connectivity strength and
matrix reasoning performance are shown as white lines. Spheres constituting
statistically significant connections are slightly bigger than the rest and carry labels
with the numbers of their corresponding Brodmann areas. Spheres and lines
representing functional connections which replicated across both samples (S498 and
S991) are depicted in yellow. Brodmann areas which were involved in statistically
significant connections in both samples are represented by red spheres. All Brodmann

areas constituting statistically significant connections are also shown as colored labels
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on four brain surfaces in the corners (lateral and medial views of the left and right

hemispheres).

Figure 5. Schematic depiction of functional connections showing statistically
significant associations with matrix reasoning performance in sample S991. Brodmann
areas included in the parcellation scheme used for this study are shown as white
spheres within the semi-transparent MNI brain in the center. Functional connections
exerting statistically significant correlations between their connectivity strength and
matrix reasoning performance are shown as white lines. Spheres constituting
statistically significant connections are slightly bigger than the rest and carry labels
with the numbers of their corresponding Brodmann areas. Spheres and lines
representing functional connections which replicated across both samples (S498 and
S991) are depicted in yellow. Brodmann areas which were involved in statistically
significant connections in both samples are represented by red spheres. All Brodmann
areas constituting statistically significant connections are also shown as colored labels
on four brain surfaces in the corners (lateral and medial views of the left and right

hemispheres).
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