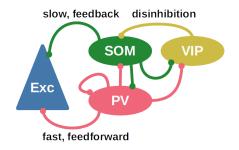


A CORTICAL MICROCIRCUIT MODEL WITH MULTIPLE INTERNEURON CLASSES


IAS 2021 Presentation

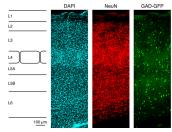
April 16, 2021 | Han-Jia Jiang | INM-6, Jülich Research Centre, Germany

INTRODUCTION


 We develop a model of mouse barrel cortex incorporating three major classes of inhibitory interneurons (PV, SOM, VIP) to study their contributions in network dynamics and sensory signal processings

INTRODUCTION

 We develop a model of mouse barrel cortex incorporating three major classes of inhibitory interneurons (PV, SOM, VIP) to study their contributions in network dynamics and sensory signal processings


MODEL OVERVIEW

- Tool: NEST simulator (C++, python)
- Neuron model: leaky integrate-and-fire neuron

MODEL OVERVIEW


- Tool: NEST simulator (C++, python)
- Neuron model: leaky integrate-and-fire neuron
- N of neurons: 6450 (mouse C2 barrel column)

(Lefort et al., 2009, Neuron)

MODEL OVERVIEW

- Tool: NEST simulator (C++, python)
- Neuron model: leaky integrate-and-fire neuron
- N of neurons: 6450 (mouse C2 barrel column)

(Lefort et al., 2009, Neuron)

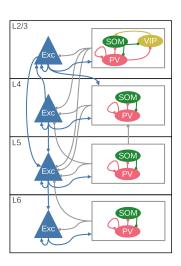


Figure: Overall multi-layer connectivity

MODEL PARAMETERS

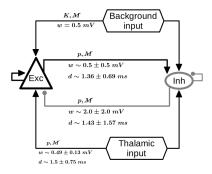
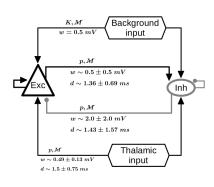



Figure: Connection parameters

MODEL PARAMETERS

302 L5 264 L6 Figure: Dimensions

L2/3

290

170

Figure: Connection parameters

 (μm)

MODEL PARAMETERS

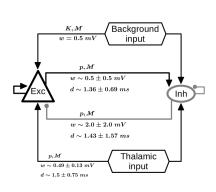


Figure: Connection parameters

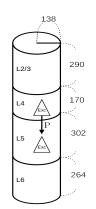


Figure: Dimensions (μm)

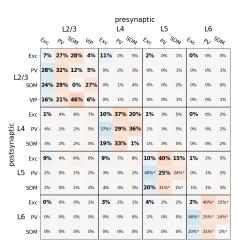


Figure: Connection probabilities

NETWORK GROUND STATE

 The simulated population firing rates are comparable to in vivo data (Yu et al., 2019, Neuron)

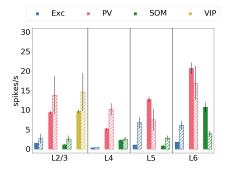


Figure: Population firing rates (filled) compared to *in vivo* data (hatched)

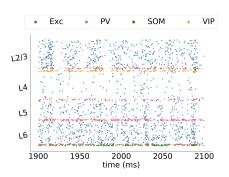


Figure: Raster plot

NETWORK DYNAMICS

 The L2/3 network responses to activation of PV, SOM, and VIP cells show their respective roles of inhibition and disinhibition

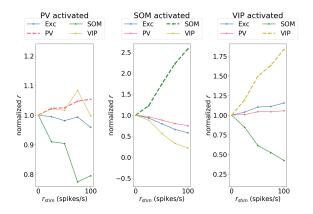
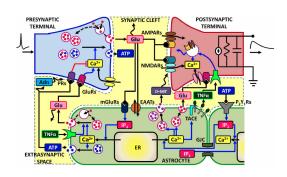


Figure: L2/3 network responses (normalized firing rates) to cell-type-specific stimulations

FUTURE WORKS


- Mechanistic and theoretical analysis
- Neurotransmitter effects (ACh)

FUTURE WORKS

- Mechanistic and theoretical analysis
- Neurotransmitter effects (ACh)
- Neuron-astrocyte interactions (to be developed in NEST)
 - Ca⁺⁺, IP₃, slow inward current
 - tripartite synapse
 - lacktriangleq networks of \sim 10000 cells

collaborator: Prof. Dr. Marja-Leena Linne, Tempere University

De Pittà et al., 2012, Frontiers in Comutational Neuroscience

ACKNOWLEDGEMENT

- Affiliations
 - Institute of Neuroscience and Medicine (INM-6), Jülich Research Centre, Jülich, Germany
 - Institute for Zoology, University of Cologne
- Supervisors
 - Prof. Dr. Markus Diesmann
 - Jun. Prof. Dr. Sacha van Albada

Thank you for listening!

INM-6, Jülich Research Centre

