000893979 001__ 893979
000893979 005__ 20231123201912.0
000893979 0247_ $$2doi$$a10.1016/j.neuroimage.2021.118327
000893979 0247_ $$2ISSN$$a1053-8119
000893979 0247_ $$2ISSN$$a1095-9572
000893979 0247_ $$2Handle$$a2128/28129
000893979 0247_ $$2altmetric$$aaltmetric:108560426
000893979 0247_ $$2pmid$$a34224853
000893979 0247_ $$2WOS$$aWOS:000693361400007
000893979 037__ $$aFZJ-2021-02964
000893979 082__ $$a610
000893979 1001_ $$0P:(DE-Juel1)170068$$aSchiffer, Christian$$b0$$eCorresponding author$$ufzj
000893979 245__ $$aConvolutional neural networks for cytoarchitectonic brain mapping at large scale
000893979 260__ $$aOrlando, Fla.$$bAcademic Press$$c2021
000893979 3367_ $$2DRIVER$$aarticle
000893979 3367_ $$2DataCite$$aOutput Types/Journal article
000893979 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1700723299_27924
000893979 3367_ $$2BibTeX$$aARTICLE
000893979 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893979 3367_ $$00$$2EndNote$$aJournal Article
000893979 520__ $$aHuman brain atlases provide spatial reference systems for data characterizing brain organization at different levels, coming from different brains. Cytoarchitecture is a basic principle of the microstructural organization of the brain, as regional differences in the arrangement and composition of neuronal cells are indicators of changes in connectivity and function. Automated scanning procedures and observer-independent methods are prerequisites to reliably identify cytoarchitectonic areas, and to achieve reproducible models of brain segregation. Time becomes a key factor when moving from the analysis of single regions of interest towards high-throughput scanning of large series of whole-brain sections. Here we present a new workflow for mapping cytoarchitectonic areas in large series of cell-body stained histological sections of human postmortem brains. It is based on a Deep Convolutional Neural Network (CNN), which is trained on a pair of section images with annotations, with a large number of un-annotated sections in between. The model learns to create all missing annotations in between with high accuracy, and faster than our previous workflow based on observer-independent mapping. The new workflow does not require preceding 3D-reconstruction of sections, and is robust against histological artefacts. It processes large data sets with sizes in the order of multiple Terabytes efficiently. The workflow was integrated into a web interface, to allow access without expertise in deep learning and batch computing. Applying deep neural networks for cytoarchitectonic mapping opens new perspectives to enable high-resolution models of brain areas, introducing CNNs to identify borders of brain areas.
000893979 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000893979 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
000893979 536__ $$0G:(DE-HGF)InterLabs-0015$$aHIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)$$cInterLabs-0015$$x2
000893979 536__ $$0G:(GEPRIS)347572269$$aDFG project 347572269 - Heterogenität von Zytoarchitektur, Chemoarchitektur und Konnektivität in einem großskaligen Computermodell der menschlichen Großhirnrinde (347572269)$$c347572269$$x3
000893979 536__ $$0G:(DE-Juel-1)E.40401.62$$aHelmholtz AI - Helmholtz Artificial Intelligence  Coordination Unit – Local Unit FZJ (E.40401.62)$$cE.40401.62$$x4
000893979 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893979 7001_ $$0P:(DE-Juel1)167110$$aSpitzer, Hannah$$b1
000893979 7001_ $$0P:(DE-Juel1)171890$$aKiwitz, Kai$$b2$$ufzj
000893979 7001_ $$0P:(DE-Juel1)171533$$aUnger, Nina$$b3$$ufzj
000893979 7001_ $$0P:(DE-HGF)0$$aWagstyl, Konrad$$b4
000893979 7001_ $$0P:(DE-HGF)0$$aEvans, Alan C.$$b5
000893979 7001_ $$0P:(DE-HGF)0$$aHarmeling, Stefan$$b6
000893979 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b7$$ufzj
000893979 7001_ $$0P:(DE-Juel1)165746$$aDickscheid, Timo$$b8$$ufzj
000893979 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2021.118327$$gVol. 240, p. 118327 -$$p118327 -$$tNeuroImage$$v240$$x1053-8119$$y2021
000893979 8564_ $$uhttps://juser.fz-juelich.de/record/893979/files/1-s2.0-S1053811921006030-main.pdf$$yOpenAccess
000893979 8564_ $$uhttps://juser.fz-juelich.de/record/893979/files/Schiffer_etal_bioRXiv_Neuroimage_2020_prepint.pdf$$yOpenAccess
000893979 8767_ $$8OAD0000131456$$92021-07-02$$d2021-07-05$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200168537
000893979 909CO $$ooai:juser.fz-juelich.de:893979$$popen_access$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popenaire$$pdnbdelivery
000893979 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170068$$aForschungszentrum Jülich$$b0$$kFZJ
000893979 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171890$$aForschungszentrum Jülich$$b2$$kFZJ
000893979 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171533$$aForschungszentrum Jülich$$b3$$kFZJ
000893979 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b7$$kFZJ
000893979 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165746$$aForschungszentrum Jülich$$b8$$kFZJ
000893979 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000893979 9141_ $$y2021
000893979 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000893979 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000893979 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-29
000893979 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29
000893979 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000893979 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2019$$d2021-01-29
000893979 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-29
000893979 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-29
000893979 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000893979 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-29
000893979 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000893979 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893979 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000893979 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-29
000893979 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2019$$d2021-01-29
000893979 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-29
000893979 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000893979 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893979 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000893979 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000893979 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000893979 980__ $$ajournal
000893979 980__ $$aVDB
000893979 980__ $$aI:(DE-Juel1)INM-1-20090406
000893979 980__ $$aAPC
000893979 980__ $$aUNRESTRICTED
000893979 9801_ $$aAPC
000893979 9801_ $$aFullTexts