000893990 001__ 893990
000893990 005__ 20240610120058.0
000893990 0247_ $$2doi$$a10.1140/epje/s10189-021-00076-z
000893990 0247_ $$2ISSN$$a1292-8941
000893990 0247_ $$2ISSN$$a1292-895X
000893990 0247_ $$2ISSN$$a2429-5299
000893990 0247_ $$2Handle$$a2128/28122
000893990 0247_ $$2pmid$$a34196906
000893990 0247_ $$2WOS$$aWOS:000668927000002
000893990 037__ $$aFZJ-2021-02967
000893990 082__ $$a530
000893990 1001_ $$0P:(DE-Juel1)169383$$aGong, A.$$b0
000893990 245__ $$aReconstruction of the three-dimensional beat pattern underlying swimming behaviors of sperm
000893990 260__ $$aHeidelberg$$bSpringer$$c2021
000893990 3367_ $$2DRIVER$$aarticle
000893990 3367_ $$2DataCite$$aOutput Types/Journal article
000893990 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1626079471_18499
000893990 3367_ $$2BibTeX$$aARTICLE
000893990 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893990 3367_ $$00$$2EndNote$$aJournal Article
000893990 520__ $$aThe eukaryotic flagellum propels sperm cells and simultaneously detects physical and chemical cues that modulate the waveform of the flagellar beat. Most previous studies have characterized the flagellar beat and swimming trajectories in two space dimensions (2D) at a water/glass interface. Here, using refined holographic imaging methods, we report high-quality recordings of three-dimensional (3D) flagellar bending waves. As predicted by theory, we observed that an asymmetric and planar flagellar beat results in a circular swimming path, whereas a symmetric and non-planar flagellar beat results in a twisted-ribbon swimming path. During swimming in 3D, human sperm flagella exhibit torsion waves characterized by maxima at the low curvature regions of the flagellar wave. We suggest that these torsion waves are common in nature and that they are an intrinsic property of beating axonemes. We discuss how 3D beat patterns result in twisted-ribbon swimming paths. This study provides new insight into the axoneme dynamics, the 3D flagellar beat, and the resulting swimming behavior.
000893990 536__ $$0G:(DE-HGF)POF4-5243$$a5243 - Information Processing in Distributed Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000893990 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893990 7001_ $$0P:(DE-Juel1)162464$$aRode, Sebastian$$b1$$ufzj
000893990 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b2
000893990 7001_ $$0P:(DE-HGF)0$$aKaupp, U. B.$$b3$$eCorresponding author
000893990 7001_ $$0P:(DE-Juel1)130629$$aElgeti, J.$$b4
000893990 7001_ $$00000-0002-9742-6555$$aFriedrich, B. M.$$b5
000893990 7001_ $$00000-0002-1027-2291$$aAlvarez, L.$$b6$$eCorresponding author
000893990 773__ $$0PERI:(DE-600)2004003-9$$a10.1140/epje/s10189-021-00076-z$$gVol. 44, no. 7, p. 87$$n7$$p87$$tThe European physical journal / E$$v44$$x1292-895X$$y2021
000893990 8564_ $$uhttps://juser.fz-juelich.de/record/893990/files/Gong2021_Article_ReconstructionOfTheThree-dimen.pdf$$yOpenAccess
000893990 909CO $$ooai:juser.fz-juelich.de:893990$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162464$$aForschungszentrum Jülich$$b1$$kFZJ
000893990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b2$$kFZJ
000893990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130629$$aForschungszentrum Jülich$$b4$$kFZJ
000893990 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5243$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000893990 9141_ $$y2021
000893990 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000893990 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000893990 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893990 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000893990 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J E : 2019$$d2021-02-03
000893990 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000893990 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-02-03$$wger
000893990 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000893990 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000893990 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893990 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000893990 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000893990 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000893990 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000893990 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000893990 9201_ $$0I:(DE-Juel1)IBI-5-20200312$$kIBI-5$$lTheoretische Physik der Lebenden Materie$$x0
000893990 9801_ $$aFullTexts
000893990 980__ $$ajournal
000893990 980__ $$aVDB
000893990 980__ $$aUNRESTRICTED
000893990 980__ $$aI:(DE-Juel1)IBI-5-20200312
000893990 981__ $$aI:(DE-Juel1)IAS-2-20090406