000893991 001__ 893991
000893991 005__ 20250129094254.0
000893991 0247_ $$2doi$$a10.1007/s00339-021-04713-4
000893991 0247_ $$2ISSN$$a0340-3793
000893991 0247_ $$2ISSN$$a0721-7250
000893991 0247_ $$2ISSN$$a0947-8396
000893991 0247_ $$2ISSN$$a1432-0630
000893991 0247_ $$2Handle$$a2128/28145
000893991 0247_ $$2altmetric$$aaltmetric:108607929
000893991 0247_ $$2WOS$$aWOS:000691424600002
000893991 037__ $$aFZJ-2021-02968
000893991 082__ $$a530
000893991 1001_ $$0P:(DE-Juel1)179117$$aOphoven, Niklas$$b0$$eCorresponding author
000893991 245__ $$aMonte Carlo simulation of proton- and neutron-induced radiation damage in a tantalum target irradiated by 70 MeV protons
000893991 260__ $$aNew York$$bSpringer$$c2021
000893991 3367_ $$2DRIVER$$aarticle
000893991 3367_ $$2DataCite$$aOutput Types/Journal article
000893991 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1626164846_14726
000893991 3367_ $$2BibTeX$$aARTICLE
000893991 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893991 3367_ $$00$$2EndNote$$aJournal Article
000893991 520__ $$aBeams of free neutrons are an important probe to analyze the structure and dynamics of condensed matter and are produced at neutron research reactors, neutron spallation sources or compact accelerator-based neutron sources (CANS). An efficient construction of CANS with a maximized neutron yield and brilliance requires reliable knowledge of the consequences of radiation-induced material damage, the predominating bottleneck of a target’s lifetime. In the framework of the Jülich High-Brilliance neutron Source project, the impact of proton- and neutron-induced material damage of a tantalum target was investigated. The Monte Carlo codes FLUKA and SRIM were utilized to extract the number of displacements per atom resulting from atomic rearrangements. The simulations performed distinctly identify the rear of the neutron target as the most vulnerable area, with the protons as main damage contributors. The minor contribution of neutrons is a material-specific phenomenon due to their high mean free path length in tantalum. Numerical results of the simulations served to calculate average and peak damage rates Rd (dpa/s), both in turn scaled to annual displacement doses for continuous operation in a full power year (dpa/fpy). Supplemented by the literature, a minimum target lifetime τmin of 2.6 years (33 Ah) is concluded.
000893991 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000893991 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
000893991 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893991 7001_ $$0P:(DE-Juel1)130382$$aMauerhofer, Eric$$b1
000893991 7001_ $$0P:(DE-Juel1)7897$$aLi, Jingjing$$b2
000893991 7001_ $$0P:(DE-Juel1)130928$$aRücker, Ulrich$$b3
000893991 7001_ $$0P:(DE-Juel1)131055$$aZakalek, Paul$$b4
000893991 7001_ $$0P:(DE-Juel1)169802$$aBaggemann, Johannes$$b5
000893991 7001_ $$0P:(DE-Juel1)168124$$aGutberlet, Thomas$$b6
000893991 7001_ $$0P:(DE-Juel1)130572$$aBrückel, Thomas$$b7
000893991 7001_ $$0P:(DE-HGF)0$$aLanger, Christoph$$b8
000893991 773__ $$0PERI:(DE-600)1398311-8$$a10.1007/s00339-021-04713-4$$gVol. 127, no. 8, p. 576$$n8$$p576$$tApplied physics / A$$v127$$x1432-0630$$y2021
000893991 8564_ $$uhttps://juser.fz-juelich.de/record/893991/files/Paper_RadDMG_Rev1.pdf$$yOpenAccess
000893991 8564_ $$uhttps://juser.fz-juelich.de/record/893991/files/RadiationDamage_AppliedPhysicsA_2021.pdf$$yOpenAccess
000893991 8767_ $$d2021-07-03$$eHybrid-OA$$jDEAL
000893991 909CO $$ooai:juser.fz-juelich.de:893991$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000893991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179117$$aForschungszentrum Jülich$$b0$$kFZJ
000893991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130382$$aForschungszentrum Jülich$$b1$$kFZJ
000893991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7897$$aForschungszentrum Jülich$$b2$$kFZJ
000893991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130928$$aForschungszentrum Jülich$$b3$$kFZJ
000893991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131055$$aForschungszentrum Jülich$$b4$$kFZJ
000893991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169802$$aForschungszentrum Jülich$$b5$$kFZJ
000893991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168124$$aForschungszentrum Jülich$$b6$$kFZJ
000893991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b7$$kFZJ
000893991 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000893991 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
000893991 9141_ $$y2021
000893991 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000893991 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000893991 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-03
000893991 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893991 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000893991 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000893991 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000893991 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-02-03$$wger
000893991 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000893991 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000893991 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893991 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000893991 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS A-MATER : 2019$$d2021-02-03
000893991 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000893991 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000893991 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000893991 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000893991 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000893991 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000893991 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000893991 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000893991 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000893991 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000893991 9201_ $$0I:(DE-Juel1)JCNS-HBS-20180709$$kJCNS-HBS$$lHigh Brilliance Source$$x3
000893991 9801_ $$aFullTexts
000893991 980__ $$ajournal
000893991 980__ $$aVDB
000893991 980__ $$aUNRESTRICTED
000893991 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000893991 980__ $$aI:(DE-Juel1)PGI-4-20110106
000893991 980__ $$aI:(DE-82)080009_20140620
000893991 980__ $$aI:(DE-Juel1)JCNS-HBS-20180709
000893991 980__ $$aAPC
000893991 981__ $$aI:(DE-Juel1)JCNS-2-20110106