000894012 001__ 894012
000894012 005__ 20240715202021.0
000894012 0247_ $$2doi$$a10.1016/j.csbj.2021.07.001
000894012 0247_ $$2Handle$$a2128/28430
000894012 0247_ $$2pmid$$a34429845
000894012 0247_ $$2WOS$$aWOS:000692610700009
000894012 0247_ $$2altmetric$$aaltmetric:112383932
000894012 037__ $$aFZJ-2021-02979
000894012 082__ $$a570
000894012 1001_ $$0P:(DE-Juel1)176217$$aEl Harrar, Till$$b0
000894012 245__ $$aAqueous ionic liquids redistribute local enzyme stability via long-range perturbation pathways
000894012 260__ $$aGotenburg$$bResearch Network of Computational and Structural Biotechnology (RNCSB)$$c2021
000894012 3367_ $$2DRIVER$$aarticle
000894012 3367_ $$2DataCite$$aOutput Types/Journal article
000894012 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721025793_6762
000894012 3367_ $$2BibTeX$$aARTICLE
000894012 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894012 3367_ $$00$$2EndNote$$aJournal Article
000894012 520__ $$aIonic liquids (IL) and aqueous ionic liquids (aIL) are attractive (co-)solvents for biocatalysis due to their unique properties. On the other hand, the incubation of enzymes in IL or aIL often reduces enzyme activity. Recent studies proposed various aIL-induced effects to explain the reduction, classified as direct effects, e.g., local dehydration or competitive inhibition, and indirect effects, e.g., structural perturbations or disturbed catalytic site integrity. However, the molecular origin of indirect effects has largely remained elusive. Here we show by multi-μs long molecular dynamics simulations, free energy computations, and rigidity analyses that aIL favorably interact with specific residues of Bacillus subtilis Lipase A (BsLipA) and modify the local structural stability of this model enzyme by inducing long-range perturbations of noncovalent interactions. The perturbations percolate over neighboring residues and eventually affect the catalytic site and the buried protein core. Validation against a complete experimental site saturation mutagenesis library of BsLipA (3620 variants) reveals that the residues of the perturbation pathways are distinguished sequence positions where substitutions highly likely yield significantly improved residual activity. Our results demonstrate that identifying these perturbation pathways and specific IL ion-residue interactions there effectively predicts focused variant libraries with improved aIL tolerance.
000894012 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000894012 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x1
000894012 536__ $$0G:(DE-Juel1)hkf7_20200501$$aForschergruppe Gohlke (hkf7_20200501)$$chkf7_20200501$$fForschergruppe Gohlke$$x2
000894012 536__ $$0G:(DE-Juel1)CSD-SSD-20190612$$aCSD-SSD - Center for Simulation and Data Science (CSD) - School for Simulation and Data Science (SSD) (CSD-SSD-20190612)$$cCSD-SSD-20190612$$x3
000894012 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894012 7001_ $$0P:(DE-Juel1)172887$$aFrieg, Benedikt$$b1
000894012 7001_ $$00000-0003-0089-7156$$aDavari, Mehdi D.$$b2
000894012 7001_ $$0P:(DE-Juel1)131457$$aJaeger, Karl-Erich$$b3
000894012 7001_ $$0P:(DE-HGF)0$$aSchwaneberg, Ulrich$$b4
000894012 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b5$$eCorresponding author
000894012 773__ $$0PERI:(DE-600)2694435-2$$a10.1016/j.csbj.2021.07.001$$gp. S2001037021002919$$p4248-4264$$tComputational and structural biotechnology journal$$v19$$x2001-0370$$y2021
000894012 8564_ $$uhttps://juser.fz-juelich.de/record/894012/files/Invoice_OAD0000133555.pdf
000894012 8564_ $$uhttps://juser.fz-juelich.de/record/894012/files/1-s2.0-S2001037021002919-main.pdf$$yOpenAccess
000894012 8767_ $$8OAD0000133555$$92021-07-13$$d2021-07-15$$eAPC$$jZahlung erfolgt$$zBelegnr.  1200168918
000894012 909CO $$ooai:juser.fz-juelich.de:894012$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery$$popenCost$$pVDB$$pdriver
000894012 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176217$$aForschungszentrum Jülich$$b0$$kFZJ
000894012 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172887$$aForschungszentrum Jülich$$b1$$kFZJ
000894012 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131457$$aForschungszentrum Jülich$$b3$$kFZJ
000894012 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b5$$kFZJ
000894012 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000894012 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
000894012 9141_ $$y2021
000894012 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000894012 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000894012 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894012 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT STRUCT BIOTEC : 2019$$d2021-02-03
000894012 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-03
000894012 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-03
000894012 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000894012 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000894012 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000894012 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894012 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-02-03
000894012 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000894012 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCOMPUT STRUCT BIOTEC : 2019$$d2021-02-03
000894012 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000894012 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-03
000894012 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000894012 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000894012 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x1
000894012 9201_ $$0I:(DE-Juel1)IMET-20090612$$kIMET$$lInstitut für Molekulare Enzymtechnologie (HHUD)$$x2
000894012 9201_ $$0I:(DE-Juel1)IBG-4-20200403$$kIBG-4$$lBioinformatik$$x3
000894012 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x4
000894012 980__ $$ajournal
000894012 980__ $$aVDB
000894012 980__ $$aI:(DE-Juel1)JSC-20090406
000894012 980__ $$aI:(DE-Juel1)IBI-7-20200312
000894012 980__ $$aI:(DE-Juel1)IMET-20090612
000894012 980__ $$aI:(DE-Juel1)IBG-4-20200403
000894012 980__ $$aI:(DE-Juel1)NIC-20090406
000894012 980__ $$aAPC
000894012 980__ $$aUNRESTRICTED
000894012 9801_ $$aAPC
000894012 9801_ $$aFullTexts