Home > Publications database > Aqueous ionic liquids redistribute local enzyme stability via long-range perturbation pathways > print |
001 | 894012 | ||
005 | 20240715202021.0 | ||
024 | 7 | _ | |a 10.1016/j.csbj.2021.07.001 |2 doi |
024 | 7 | _ | |a 2128/28430 |2 Handle |
024 | 7 | _ | |a 34429845 |2 pmid |
024 | 7 | _ | |a WOS:000692610700009 |2 WOS |
024 | 7 | _ | |a altmetric:112383932 |2 altmetric |
037 | _ | _ | |a FZJ-2021-02979 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a El Harrar, Till |0 P:(DE-Juel1)176217 |b 0 |
245 | _ | _ | |a Aqueous ionic liquids redistribute local enzyme stability via long-range perturbation pathways |
260 | _ | _ | |a Gotenburg |c 2021 |b Research Network of Computational and Structural Biotechnology (RNCSB) |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1721025793_6762 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Ionic liquids (IL) and aqueous ionic liquids (aIL) are attractive (co-)solvents for biocatalysis due to their unique properties. On the other hand, the incubation of enzymes in IL or aIL often reduces enzyme activity. Recent studies proposed various aIL-induced effects to explain the reduction, classified as direct effects, e.g., local dehydration or competitive inhibition, and indirect effects, e.g., structural perturbations or disturbed catalytic site integrity. However, the molecular origin of indirect effects has largely remained elusive. Here we show by multi-μs long molecular dynamics simulations, free energy computations, and rigidity analyses that aIL favorably interact with specific residues of Bacillus subtilis Lipase A (BsLipA) and modify the local structural stability of this model enzyme by inducing long-range perturbations of noncovalent interactions. The perturbations percolate over neighboring residues and eventually affect the catalytic site and the buried protein core. Validation against a complete experimental site saturation mutagenesis library of BsLipA (3620 variants) reveals that the residues of the perturbation pathways are distinguished sequence positions where substitutions highly likely yield significantly improved residual activity. Our results demonstrate that identifying these perturbation pathways and specific IL ion-residue interactions there effectively predicts focused variant libraries with improved aIL tolerance. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a 2171 - Biological and environmental resources for sustainable use (POF4-217) |0 G:(DE-HGF)POF4-2171 |c POF4-217 |f POF IV |x 1 |
536 | _ | _ | |a Forschergruppe Gohlke (hkf7_20200501) |0 G:(DE-Juel1)hkf7_20200501 |c hkf7_20200501 |f Forschergruppe Gohlke |x 2 |
536 | _ | _ | |a CSD-SSD - Center for Simulation and Data Science (CSD) - School for Simulation and Data Science (SSD) (CSD-SSD-20190612) |0 G:(DE-Juel1)CSD-SSD-20190612 |c CSD-SSD-20190612 |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Frieg, Benedikt |0 P:(DE-Juel1)172887 |b 1 |
700 | 1 | _ | |a Davari, Mehdi D. |0 0000-0003-0089-7156 |b 2 |
700 | 1 | _ | |a Jaeger, Karl-Erich |0 P:(DE-Juel1)131457 |b 3 |
700 | 1 | _ | |a Schwaneberg, Ulrich |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Gohlke, Holger |0 P:(DE-Juel1)172663 |b 5 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.csbj.2021.07.001 |g p. S2001037021002919 |0 PERI:(DE-600)2694435-2 |p 4248-4264 |t Computational and structural biotechnology journal |v 19 |y 2021 |x 2001-0370 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/894012/files/Invoice_OAD0000133555.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/894012/files/1-s2.0-S2001037021002919-main.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:894012 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)176217 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)172887 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)131457 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)172663 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2171 |x 1 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-03 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMPUT STRUCT BIOTEC : 2019 |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-02-03 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-03 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-03 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-02-03 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-02-03 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b COMPUT STRUCT BIOTEC : 2019 |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-03 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-7-20200312 |k IBI-7 |l Strukturbiochemie |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)IMET-20090612 |k IMET |l Institut für Molekulare Enzymtechnologie (HHUD) |x 2 |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-4-20200403 |k IBG-4 |l Bioinformatik |x 3 |
920 | 1 | _ | |0 I:(DE-Juel1)NIC-20090406 |k NIC |l John von Neumann - Institut für Computing |x 4 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
980 | _ | _ | |a I:(DE-Juel1)IMET-20090612 |
980 | _ | _ | |a I:(DE-Juel1)IBG-4-20200403 |
980 | _ | _ | |a I:(DE-Juel1)NIC-20090406 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|