000894014 001__ 894014 000894014 005__ 20250129094256.0 000894014 0247_ $$2Handle$$a2128/28150 000894014 037__ $$aFZJ-2021-02981 000894014 041__ $$aEnglish 000894014 1001_ $$0P:(DE-Juel1)178021$$aRai, Venus$$b0 000894014 1112_ $$aIOP Magnetism 2021$$conline event$$d2021-04-12 - 2021-04-13$$wonline event 000894014 245__ $$aChiral anomaly and anomalous Hall effect in Hexagonal-Mn3+δGe 000894014 260__ $$c2021 000894014 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1626168217_17001 000894014 3367_ $$033$$2EndNote$$aConference Paper 000894014 3367_ $$2BibTeX$$aINPROCEEDINGS 000894014 3367_ $$2DRIVER$$aconferenceObject 000894014 3367_ $$2DataCite$$aOutput Types/Conference Abstract 000894014 3367_ $$2ORCID$$aOTHER 000894014 520__ $$aChiral anomaly and anomalous Hall effect in Hexagonal-Mn3+δGeTopological quantum materials have attracted enormous attention since their discovery due to the observedanomalous transport properties, which originate from the non-zero Berry curvature. Mn3+δGe has gainedspecial attention because of its large anomalous transport effects that persist starting from Néel temperature(365 K) down to 2 K [1]. Due to the specific mirror symmetry of the triangular antiferromagnetic structure,Anomalous transport effects are expected to be observed when magnetic field (B) is applied along the x or y57 crystallographic axis [1]. Chiral anomaly, which is one of the prominent signatures of Weyl semimetals, hasnot been extensively investigated in the case of Mn3+δGe. We have performed planar Hall effect (PHE) andlongitudinal magneto-resistance (LMR) measurements with varying angle, temperature, and magnetic field.In general, chiral anomaly effects should strengthen with the increase in magnetic field [2]. However, in thecase of Mn3+δGe, chiral anomaly was observed to be suppressed in LMR and PHE measurements, when themagnetic field is increased at low temperature, which is surprising. Our single crystal neutron diffractionmeasurement did not show any anomaly in magnetic parameters below room temperature. However, X-Raydiffraction has shown maxima in lattice parameters near 235 K, below which change in electrical transportbehavior was observed. Therefore, it can be argued that the chiral anomaly and position of Weyl points aremuch more sensitive to the change in lattice parameters, in comparison with magnetic parameters.[1] A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C. Komarek, C. Shekhar, N. Kumar, W.Schnelle, J. Kübler, C. Felser, and S. S. P. Parkin, Sci. Adv. 2, e1501870 (2016)[2] N. Kumar, S. N. Guin, C. Felser, and C. Shekhar, Phys. Rev. B 98, 041103(R) (2018) 000894014 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0 000894014 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1 000894014 7001_ $$0P:(DE-Juel1)178022$$aJana, Subhadip$$b1 000894014 7001_ $$0P:(DE-Juel1)177779$$aNandi, Shibabrata$$b2$$ufzj 000894014 7001_ $$0P:(DE-Juel1)130884$$aPerßon, Jörg$$b3 000894014 7001_ $$0P:(DE-Juel1)164297$$aMeven, Martin$$b4 000894014 7001_ $$0P:(DE-HGF)0$$aDutta, Rajesh$$b5 000894014 7001_ $$0P:(DE-Juel1)130572$$aBrückel, Thomas$$b6 000894014 8564_ $$uhttps://juser.fz-juelich.de/record/894014/files/abstract_rai.pdf$$yOpenAccess 000894014 909CO $$ooai:juser.fz-juelich.de:894014$$pVDB:MLZ$$pdriver$$pVDB$$popen_access$$popenaire 000894014 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178021$$aForschungszentrum Jülich$$b0$$kFZJ 000894014 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178022$$aForschungszentrum Jülich$$b1$$kFZJ 000894014 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177779$$aForschungszentrum Jülich$$b2$$kFZJ 000894014 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130884$$aForschungszentrum Jülich$$b3$$kFZJ 000894014 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164297$$aForschungszentrum Jülich$$b4$$kFZJ 000894014 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b6$$kFZJ 000894014 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0 000894014 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1 000894014 9141_ $$y2021 000894014 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000894014 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0 000894014 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1 000894014 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2 000894014 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x3 000894014 9801_ $$aFullTexts 000894014 980__ $$aabstract 000894014 980__ $$aVDB 000894014 980__ $$aUNRESTRICTED 000894014 980__ $$aI:(DE-Juel1)JCNS-2-20110106 000894014 980__ $$aI:(DE-Juel1)PGI-4-20110106 000894014 980__ $$aI:(DE-82)080009_20140620 000894014 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218 000894014 981__ $$aI:(DE-Juel1)JCNS-2-20110106