001     894014
005     20250129094256.0
024 7 _ |a 2128/28150
|2 Handle
037 _ _ |a FZJ-2021-02981
041 _ _ |a English
100 1 _ |a Rai, Venus
|0 P:(DE-Juel1)178021
|b 0
111 2 _ |a IOP Magnetism 2021
|c online event
|d 2021-04-12 - 2021-04-13
|w online event
245 _ _ |a Chiral anomaly and anomalous Hall effect in Hexagonal-Mn3+δGe
260 _ _ |c 2021
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1626168217_17001
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Chiral anomaly and anomalous Hall effect in Hexagonal-Mn3+δGeTopological quantum materials have attracted enormous attention since their discovery due to the observedanomalous transport properties, which originate from the non-zero Berry curvature. Mn3+δGe has gainedspecial attention because of its large anomalous transport effects that persist starting from Néel temperature(365 K) down to 2 K [1]. Due to the specific mirror symmetry of the triangular antiferromagnetic structure,Anomalous transport effects are expected to be observed when magnetic field (B) is applied along the x or y57 crystallographic axis [1]. Chiral anomaly, which is one of the prominent signatures of Weyl semimetals, hasnot been extensively investigated in the case of Mn3+δGe. We have performed planar Hall effect (PHE) andlongitudinal magneto-resistance (LMR) measurements with varying angle, temperature, and magnetic field.In general, chiral anomaly effects should strengthen with the increase in magnetic field [2]. However, in thecase of Mn3+δGe, chiral anomaly was observed to be suppressed in LMR and PHE measurements, when themagnetic field is increased at low temperature, which is surprising. Our single crystal neutron diffractionmeasurement did not show any anomaly in magnetic parameters below room temperature. However, X-Raydiffraction has shown maxima in lattice parameters near 235 K, below which change in electrical transportbehavior was observed. Therefore, it can be argued that the chiral anomaly and position of Weyl points aremuch more sensitive to the change in lattice parameters, in comparison with magnetic parameters.[1] A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C. Komarek, C. Shekhar, N. Kumar, W.Schnelle, J. Kübler, C. Felser, and S. S. P. Parkin, Sci. Adv. 2, e1501870 (2016)[2] N. Kumar, S. N. Guin, C. Felser, and C. Shekhar, Phys. Rev. B 98, 041103(R) (2018)
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
700 1 _ |a Jana, Subhadip
|0 P:(DE-Juel1)178022
|b 1
700 1 _ |a Nandi, Shibabrata
|0 P:(DE-Juel1)177779
|b 2
|u fzj
700 1 _ |a Perßon, Jörg
|0 P:(DE-Juel1)130884
|b 3
700 1 _ |a Meven, Martin
|0 P:(DE-Juel1)164297
|b 4
700 1 _ |a Dutta, Rajesh
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Brückel, Thomas
|0 P:(DE-Juel1)130572
|b 6
856 4 _ |u https://juser.fz-juelich.de/record/894014/files/abstract_rai.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:894014
|p openaire
|p open_access
|p VDB
|p driver
|p VDB:MLZ
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178021
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)177779
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130884
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)164297
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130572
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 3
980 1 _ |a FullTexts
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21