Home > Publications database > Chiral anomaly and anomalous Hall effect in Hexagonal-Mn3+δGe > print |
001 | 894014 | ||
005 | 20250129094256.0 | ||
024 | 7 | _ | |a 2128/28150 |2 Handle |
037 | _ | _ | |a FZJ-2021-02981 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Rai, Venus |0 P:(DE-Juel1)178021 |b 0 |
111 | 2 | _ | |a IOP Magnetism 2021 |c online event |d 2021-04-12 - 2021-04-13 |w online event |
245 | _ | _ | |a Chiral anomaly and anomalous Hall effect in Hexagonal-Mn3+δGe |
260 | _ | _ | |c 2021 |
336 | 7 | _ | |a Abstract |b abstract |m abstract |0 PUB:(DE-HGF)1 |s 1626168217_17001 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Abstract |2 DataCite |
336 | 7 | _ | |a OTHER |2 ORCID |
520 | _ | _ | |a Chiral anomaly and anomalous Hall effect in Hexagonal-Mn3+δGeTopological quantum materials have attracted enormous attention since their discovery due to the observedanomalous transport properties, which originate from the non-zero Berry curvature. Mn3+δGe has gainedspecial attention because of its large anomalous transport effects that persist starting from Néel temperature(365 K) down to 2 K [1]. Due to the specific mirror symmetry of the triangular antiferromagnetic structure,Anomalous transport effects are expected to be observed when magnetic field (B) is applied along the x or y57 crystallographic axis [1]. Chiral anomaly, which is one of the prominent signatures of Weyl semimetals, hasnot been extensively investigated in the case of Mn3+δGe. We have performed planar Hall effect (PHE) andlongitudinal magneto-resistance (LMR) measurements with varying angle, temperature, and magnetic field.In general, chiral anomaly effects should strengthen with the increase in magnetic field [2]. However, in thecase of Mn3+δGe, chiral anomaly was observed to be suppressed in LMR and PHE measurements, when themagnetic field is increased at low temperature, which is surprising. Our single crystal neutron diffractionmeasurement did not show any anomaly in magnetic parameters below room temperature. However, X-Raydiffraction has shown maxima in lattice parameters near 235 K, below which change in electrical transportbehavior was observed. Therefore, it can be argued that the chiral anomaly and position of Weyl points aremuch more sensitive to the change in lattice parameters, in comparison with magnetic parameters.[1] A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C. Komarek, C. Shekhar, N. Kumar, W.Schnelle, J. Kübler, C. Felser, and S. S. P. Parkin, Sci. Adv. 2, e1501870 (2016)[2] N. Kumar, S. N. Guin, C. Felser, and C. Shekhar, Phys. Rev. B 98, 041103(R) (2018) |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) |0 G:(DE-HGF)POF4-6G4 |c POF4-6G4 |f POF IV |x 1 |
700 | 1 | _ | |a Jana, Subhadip |0 P:(DE-Juel1)178022 |b 1 |
700 | 1 | _ | |a Nandi, Shibabrata |0 P:(DE-Juel1)177779 |b 2 |u fzj |
700 | 1 | _ | |a Perßon, Jörg |0 P:(DE-Juel1)130884 |b 3 |
700 | 1 | _ | |a Meven, Martin |0 P:(DE-Juel1)164297 |b 4 |
700 | 1 | _ | |a Dutta, Rajesh |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Brückel, Thomas |0 P:(DE-Juel1)130572 |b 6 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/894014/files/abstract_rai.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:894014 |p openaire |p open_access |p VDB |p driver |p VDB:MLZ |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)178021 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)178022 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)177779 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130884 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)164297 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)130572 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l From Matter to Materials and Life |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G4 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Jülich Centre for Neutron Research (JCNS) (FZJ) |x 1 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-2-20110106 |k JCNS-2 |l Streumethoden |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-4-20110106 |k PGI-4 |l Streumethoden |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-FRM-II-20110218 |k JCNS-FRM-II |l JCNS-FRM-II |x 3 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a abstract |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-4-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-FRM-II-20110218 |
981 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|