000894025 001__ 894025
000894025 005__ 20240712100853.0
000894025 0247_ $$2doi$$a10.5194/acp-21-10393-2021
000894025 0247_ $$2ISSN$$a1680-7316
000894025 0247_ $$2ISSN$$a1680-7324
000894025 0247_ $$2Handle$$a2128/28260
000894025 0247_ $$2altmetric$$aaltmetric:109049551
000894025 0247_ $$2WOS$$aWOS:000672721000003
000894025 037__ $$aFZJ-2021-02992
000894025 082__ $$a550
000894025 1001_ $$0P:(DE-Juel1)176613$$aGeldenhuys, Markus$$b0$$eCorresponding author
000894025 245__ $$aOrographically induced spontaneous imbalance within the jet causing a large-scale gravity wave event
000894025 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000894025 3367_ $$2DRIVER$$aarticle
000894025 3367_ $$2DataCite$$aOutput Types/Journal article
000894025 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669887937_25750
000894025 3367_ $$2BibTeX$$aARTICLE
000894025 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894025 3367_ $$00$$2EndNote$$aJournal Article
000894025 520__ $$aTo better understand the impact of gravity waves (GWs) on the middle atmosphere in the current and future climate, it is essential to understand their excitation mechanisms and to quantify their basic properties. Here a new process for GW excitation by orography-jet interaction is discussed. In a case study, we identify the source of a GW observed over Greenland on 10 March 2016 during the POLSTRACC (POLar STRAtosphere in a Changing Climate) aircraft campaign. Measurements were taken with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) instrument deployed on the High Altitude Long Range (HALO) German research aircraft. The measured infrared limb radiances are converted into a 3D observational temperature field through the use of inverse modelling and limited-angle tomography. We observe GWs along a transect through Greenland where the GW packet covers ~1/3 of the Greenland mainland. GLORIA observations indicate GWs between 10 and 13km altitude with a horizontal wavelength of 330km, a vertical wavelength of 2km and a large temperature amplitude of 4.5K. Slanted phase fronts indicate intrinsic propagation against the wind, while the ground-based propagation is with the wind. The GWs are arrested below a critical layer above the tropospheric jet. Compared to its intrinsic horizontal group velocity (25 -- 72m/s) the GW packet has a slow vertical group velocity of 0.05 -- 0.2m/s. This causes the GW packet to propagate long distances while spreading over a large area while remaining constrained to a narrow vertical layer.Not only orography is a plausible source, but also out of balanced winds in a jet exit region and wind shear. To identify the GW source, 3D GLORIA observations are combined with a gravity wave raytracer, ERA5 reanalysis, and high-resolution numerical experiments. In a numerical experiment with a smoothed orography, GW activity is quite weak indicating that the GWs in the realistic orography experiment are due to orography. However, analysis shows that these GWs are not mountain waves. A favourable area for spontaneous GW emission is identified in the jet by the cross-stream ageostrophic wind, which indicates when the flow is out of geostrophic balance. Backwards raytracing experiments trace into the jet and regions where the Coriolis and the pressure gradient forces are out of balance. The difference between the full and a smooth-orography experiment is investigated to reveal the missing connection between orography and the out of balance jet. We find that this is flow over a broad area of elevated terrain which causes compression of air above Greenland. The orography modifies the wind flow over large horizontal and vertical scales, resulting in out of balance geostrophic components. The out of balance jet then excites GWs in order to bring the flow back into balance. This is the first observational evidence of GW generation by such an orography-jet mechanism.
000894025 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000894025 536__ $$0G:(DE-HGF)POF4-2A3$$a2A3 - Remote Sensing (CARF - CCA) (POF4-2A3)$$cPOF4-2A3$$fPOF IV$$x1
000894025 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894025 7001_ $$0P:(DE-Juel1)129143$$aPreusse, Peter$$b1
000894025 7001_ $$0P:(DE-Juel1)180608$$aKrisch, Isabell$$b2
000894025 7001_ $$00000-0003-1241-2291$$aZülicke, Christoph$$b3
000894025 7001_ $$0P:(DE-Juel1)129105$$aUngermann, Jörn$$b4
000894025 7001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b5
000894025 7001_ $$00000-0003-2016-2800$$aFriedl-Vallon, Felix$$b6
000894025 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b7
000894025 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-10393-2021$$gVol. 21, no. 13, p. 10393 - 10412$$n13$$p10393 - 10412$$tAtmospheric chemistry and physics$$v21$$x1680-7324$$y2021
000894025 8564_ $$uhttps://juser.fz-juelich.de/record/894025/files/acp-2020-1289-manuscript-version4.pdf$$yOpenAccess
000894025 8564_ $$uhttps://juser.fz-juelich.de/record/894025/files/acp-21-10393-2021.pdf$$yOpenAccess
000894025 8767_ $$8101523$$92021-07-08$$d2021-08-10$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200170536
000894025 909CO $$ooai:juser.fz-juelich.de:894025$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000894025 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176613$$aForschungszentrum Jülich$$b0$$kFZJ
000894025 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich$$b1$$kFZJ
000894025 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129105$$aForschungszentrum Jülich$$b4$$kFZJ
000894025 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b5$$kFZJ
000894025 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b7$$kFZJ
000894025 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000894025 9131_ $$0G:(DE-HGF)POF4-2A3$$1G:(DE-HGF)POF4-2A0$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lCOOPERATION ACROSS RESEARCH FIELDS (CARFs)$$vRemote Sensing (CARF - CCA)$$x1
000894025 9141_ $$y2021
000894025 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000894025 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000894025 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894025 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000894025 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000894025 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000894025 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000894025 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000894025 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000894025 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000894025 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894025 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000894025 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000894025 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000894025 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000894025 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000894025 920__ $$lyes
000894025 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000894025 9801_ $$aAPC
000894025 9801_ $$aFullTexts
000894025 980__ $$ajournal
000894025 980__ $$aVDB
000894025 980__ $$aI:(DE-Juel1)IEK-7-20101013
000894025 980__ $$aAPC
000894025 980__ $$aUNRESTRICTED
000894025 981__ $$aI:(DE-Juel1)ICE-4-20101013