000894027 001__ 894027
000894027 005__ 20210919010945.0
000894027 0247_ $$2doi$$a10.1063/5.0053446
000894027 0247_ $$2ISSN$$a0021-9606
000894027 0247_ $$2ISSN$$a1089-7690
000894027 0247_ $$2ISSN$$a1520-9032
000894027 0247_ $$2Handle$$a2128/28171
000894027 0247_ $$2pmid$$a34266279
000894027 0247_ $$2WOS$$aWOS:000692373500006
000894027 0247_ $$2altmetric$$aaltmetric:108274573
000894027 037__ $$aFZJ-2021-02993
000894027 082__ $$a530
000894027 1001_ $$0P:(DE-Juel1)184674$$aGommes, Cedric$$b0$$eCorresponding author$$ufzj
000894027 245__ $$aInelastic neutron scattering analysis with time-dependent Gaussian-field models
000894027 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2021
000894027 3367_ $$2DRIVER$$aarticle
000894027 3367_ $$2DataCite$$aOutput Types/Journal article
000894027 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1626181907_3632
000894027 3367_ $$2BibTeX$$aARTICLE
000894027 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894027 3367_ $$00$$2EndNote$$aJournal Article
000894027 520__ $$aConverting neutron scattering data to real-space time-dependent structures can only be achieved through suitable models, which is particularly challenging for geometrically disordered structures. We address this problem by introducing time-dependent clipped Gaussian field models. General expressions are derived for all space- and time-correlation functions relevant to coherent inelastic neutron scattering for multiphase systems and arbitrary scattering contrasts. Various dynamic models are introduced that enable one to add time-dependence to any given spatial statistics, as captured, e.g., by small-angle scattering. In a first approach, the Gaussian field is decomposed into localized waves that are allowed to fluctuate in time or to move either ballistically or diffusively. In a second approach, a dispersion relation is used to make the spectral components of the field time-dependent. The various models lead to qualitatively different dynamics, which can be discriminated by neutron scattering. The methods of this paper are illustrated with oil/water microemulsion studied by small-angle scattering and neutron spin-echo. All available data—in both film and bulk contrasts, over the entire range of q and τ—are analyzed jointly with a single model. The analysis points to the static large-scale structure of the oil and water domains while the interfaces are subject to thermal fluctuations. The fluctuations have an amplitude of around 60 Å and contribute to 30% of the total interface area
000894027 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000894027 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
000894027 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894027 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000894027 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000894027 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000894027 7001_ $$0P:(DE-Juel1)131067$$aZorn, Reiner$$b1
000894027 7001_ $$0P:(DE-Juel1)157910$$aJaksch, Sebastian$$b2$$ufzj
000894027 7001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, Henrich$$b3
000894027 7001_ $$0P:(DE-Juel1)130718$$aHolderer, Olaf$$b4
000894027 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/5.0053446$$gVol. 155, no. 2, p. 024121 -$$n2$$p024121 -$$tThe journal of chemical physics$$v155$$x1089-7690$$y2021
000894027 8564_ $$uhttps://juser.fz-juelich.de/record/894027/files/1063265_1_data_set_17599348_qv3dn5.pdf$$yRestricted
000894027 8564_ $$uhttps://juser.fz-juelich.de/record/894027/files/1063265_1_merged_1624345000.pdf$$yPublished on 2021-07-13. Available in OpenAccess from 2022-07-13.
000894027 8564_ $$uhttps://juser.fz-juelich.de/record/894027/files/5.0053446.pdf$$yPublished on 2021-07-13. Available in OpenAccess from 2022-07-13.
000894027 909CO $$ooai:juser.fz-juelich.de:894027$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000894027 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184674$$aForschungszentrum Jülich$$b0$$kFZJ
000894027 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131067$$aForschungszentrum Jülich$$b1$$kFZJ
000894027 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157910$$aForschungszentrum Jülich$$b2$$kFZJ
000894027 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b3$$kFZJ
000894027 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130718$$aForschungszentrum Jülich$$b4$$kFZJ
000894027 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000894027 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x1
000894027 9141_ $$y2021
000894027 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000894027 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000894027 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000894027 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000894027 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000894027 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000894027 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000894027 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000894027 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000894027 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2019$$d2021-02-02
000894027 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-02-02$$wger
000894027 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000894027 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-02
000894027 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000894027 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000894027 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000894027 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000894027 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x2
000894027 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x3
000894027 980__ $$ajournal
000894027 980__ $$aVDB
000894027 980__ $$aUNRESTRICTED
000894027 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000894027 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000894027 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000894027 980__ $$aI:(DE-588b)4597118-3
000894027 9801_ $$aFullTexts