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Converting neutron scattering data to real-space time-dependent structures can only

be achieved through suitable models, which is particularly challenging for geometri-

cally disordered structures. We address this problem by introducing time-dependent

clipped Gaussian field models. General expressions are derived for all space- and time-

correlation functions relevant to coherent inelastic neutron scattering, for multiphase

systems and arbitrary scattering contrasts. Various dynamic models are introduced

that enable one to add time-dependence to any given spatial statistics, as captured

e.g. by small-angle scattering. In a first approach, the Gaussian field is decomposed

into localised waves that are allowed to fluctuate in time or to move, either ballis-

tically or diffusively. In a second approach, a dispersion relation is used to make

the spectral components of the field time-dependent. The various models lead to

qualitatively different dynamics, which can be discriminated by neutron scattering.

The methods of the paper are illustrated with oil/water microemulsion studied by

small-angle scattering and neutron spin-echo. All available data - in both film and

bulk contrasts, over the entire range of q and τ - are analyzed jointly with a single

model. The analysis points to static large-scale structure of the oil and water do-

mains, while the interfaces are subject to thermal fluctuations. The fluctuations have

an amplitude around 60 Å and contribute to 30 % of the total interface area.

a)Current affiliation: Department of Chemical Engineering, University of Liège B6A, allée du Six Août 3,

B-4000, Liège, Belgium; Electronic mail: cedric.gommes@uliege.be
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I. INTRODUCTION

Neutron scattering is one of the few experimental techniques that allow one to probe both

the structure and the dynamics of physical systems at the Ångström scale1,2. Typically,

structural information is obtained through the elastic scattering of cold or thermal neutrons

(SANS). The dynamic information is obtained through inelastic and quasi-elastic scattering,

as the neutrons gain or lose energy when they interact with moving phases in the system.

As for most scattering techniques, however, converting experimental data to real-space and

time-dependent structures can be challenging. This is particularly the case for complex and

disordered structures that cannot be described in simple geometrical terms.

When studying disordered systems, stochastic models often provide a practical compro-

mise between geometrical realism and mathematical simplicity. The former is necessary to

account for as many geometrical features as possible, and the latter improves the robust-

ness of the analysis by avoiding unnecessarily large number of parameters3–5. In that spirit,

stochastic models have often been used to analyze small-angle scattering data from a variety

of physical systems and reconstruct their structure6–10. In the present paper, we general-

ize this type of approach to analyze and model time-dependent structures investigated by

inelastic neutron scattering.

The paper focuses specifically on a family of descriptive models based on clipped Gaussian

random fields. These models originate in the work of Cahn on spinodal decomposition11,

but they have since been used as general geometrical models of disordered structures in

a variety of contexts, including porous materials9,12,13, polymers14,15, emulsions16,17, gels18,

confined liquids19,20, nanoparticles21, etc. Gaussian random fields are comprehensively char-

acterized by their correlation function, which makes them particularly useful in the context

of scattering studies.

The theoretical developments of the present paper are illustrated on previously-published

elastic and inelastic neutron scattering data measured on water/oil microemulsion, which are

presented shortly in Section II, together with some general results pertaining to elastic and

inelastic neutron scattering. Section III covers some classical results of static Gaussian-field

models, which are generalized to time-dependent structures in Section IV. Three families

of dynamic models are proposed, which are applicable to any static Gaussian field and

endow it with qualitatively different time-dependence. In Section V, some aspects of the
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models relevant to inelastic scattering are discussed, and the models are used to analyze the

microemulsion data.

II. NEUTRON SMALL-ANGLE SCATTERING AND SPIN-ECHO DATA

The methods and models developed in the paper are illustrated with published neutron

small-angle scattering (SANS) patterns and neutron spin-echo (NSE) data measured on a

water/oil microemulsion stabilised with a surfactant22,23. The relevant data are available on

the authors institutional repository24 and they are displayed in Fig. 1.

The bicontinuous phases of the microemulsion consisted in water and decane with decyl-

polyglycol-ether (C10E4) as a surfactant. The volume fractions of the three phases were

φo ≃ 0.4075, φs ≃ 0.185 and φa ≃ 0.4075 for oil, surfactant and aqueous phases, respec-

tively. Small amounts (0.25 wt.%) of homopolymers were dispersed in the continuous phases

in order to slightly modify their viscosity and the efficiency of the surfactant (see Refs.22,23),

namely polyethylene oxide (PEO) in water and polyethylene propylene (PEP) in decane.

The molecular weights slightly differed in SANS (10 kg/mol) and NSE (5 kg/mol) exper-

iments, which has only minor effects for the purposes of this study on the relaxation rate

in the NSE experiments (< 10 %), but gave a complete set of SANS and NSE data. The

microemulsion was prepared in two different neutron scattering contrasts, by exchanging

hydrogen with deuterium. In the so-called bulk contrast, deuterated water (D2O) was used

with protonated surfactant and oil, which results in a contrast between the water domains

and the oil-surfactant-domains. In film contrast, the decane was deuterated as well, leaving

only the protonated surfactant film visible in the deuterated water/oil surrounding. The

SANS experiments were conducted on the KWS-2 small angle scattering instrument at the

DIDO reactor of Forschungszentrum Jülich, the NSE experiments were conducted on the

IN15 instrument at the Institut Laue-Langevin in Grenoble. The resolutions the SANS and

NSE data in Fig. 1 are σSANS
q = 0.0034 Å−1 and σNSE

q = 0.0085 Å−1, respectively.

Microemulsions are strong coherent scatterers, so that incoherent scattering from individ-

ual atoms (mainly hydrogen) does not play a significant role at the length scales discussed

in this paper. Therefore, the central structural characteristic of the microemulsion relevant

to both the SANS and NSE data is the scattering-length correlation function2,25

Cρ(r, τ) = 〈ρ(x, t)ρ(x + r, t+ τ)〉 − 〈ρ〉2 (1)
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FIG. 1. Neutron Small-Angle Scattering data (SANS, a) measured on a microemulsion in bulk

(grey) and film (red) contrasts, together with structure reconstructed from it as a clipped Gaussian

field model (b1: field, b2 clipped structure with oil in grey and surfactant in red). The neutron

spin-echo (NSE) data measured in the same conditions are shown in c1 and c2. In the SANS

patterns (a) the dots are the experimental values, and the solid lines are the fitted model. The

values in the Gaussian field shown in b1 range from -2.5 (blue) to + 2.5 (yellow). The error bars

are ±2σ for both SANS and NSE.

which characterises the statistical correlation between the scattering length density ρ at two

points at a distance r apart, and time lag τ . Throughout the paper we assume statistical

isotropy, so that correlation functions depend only on the modulus of the distance r = |r|.
In Eq. (1) the brackets 〈〉 stand for the average value, evaluated over all accessible positions

x and times t. For the type of ergodic models considered later in the paper, they can also

be thought of as ensemble averages.4,5,9

When working with stochastic models it is convenient to introduce the concept of

covariance3,5, which is occasionally also referred to as 2-point probability functions4 or

stick-probability functions26. The covariance of, say the oil phase o of the microemulsion, is

defined as the probability for two points at distance r from one another to belong to that
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phase at two moments separated with time lag τ , namely

Coo(r, τ) = Prob [(x ∈ o at time t) & (x+ r ∈ o at time t+ τ)] (2)

As this generalizes to cross-covariances for two points belonging to two distinct phases, the

name self-covariance is occasionally used to insist that the two points belong to the same

phase. Because each of the three phases of the microemulsion - oily, aqueous and surfactant -

has a specific scattering-length density, the correlation function Cρ(r) is a linear combination

of the covariances of the phases. Out of the six self- and cross-covariances that are defined

for a three-phase system, only three are linearly independent.4 A convenient expression for

Cρ is therefore19

Cρ(r, τ) = (ρo − ρs)(ρo − ρa)[Coo(r, τ)− φ2
o] + (ρs − ρo)(ρs − ρa)[Css(r, τ)− φ2

s]

+ (ρa − ρo)(ρa − ρs)[Caa(r, τ)− φ2
a] (3)

where ρo, ρs and ρa are the scattering-length densities of the oil, surfactant, and aqueous

phases, respectively; Coo, Css and Caa are the corresponding self-covariances. A derivation of

Eq. (3) is provided in the Supplementary Material (Sec. SM-1). The bulk contrast relevant

to Fig. 1 correspond to ρo = ρs 6= ρa, in which case Cρ is proportional to Caa. The film

contrast corresponds to ρo = ρa 6= ρs, and in that case Cρ is proportional to Css.

The coherent inelastic neutron scattering data is expressed in terms of the intermediate

scattering function I(q, τ). The latter is defined as the Fourier transform of the correlation

function Cρ(r, τ), namely1,2

I(q, τ) =

∫ ∞

0

sin(qr)

qr
Cρ(r, τ)4πr

2dr (4)

and the instrument resolution is accounted by multiplying Cρ by a spread function with

width σq, prior to Fourier transform. The situation relevant to SANS is elastic scattering

corresponding to I(q, 0), to which we refer simply as I(q) when there is no ambiguity. The

data measured in NSE instruments is I(q, τ)/I(q), as given in Fig. 1c1 and 1c2 for the

microemulsion.

In Fig. 1 the SANS data in both film and bulk contrasts were fitted jointly with a

clipped Gaussian field model, adapting a procedure developed elsewhere9. For the sake

of completeness, the detailed procedure is described in the Supplementary Material (Sec.

SM-3.3). A realisation of the model is shown in Fig. 1b.
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III. CLIPPED GAUSSIAN-FIELD MODELS

A. Static Gaussian random fields

We focus here on static, that is time-independent, Gaussian random fields (GRF) and we

introduce time-dependence in Sec. IV. A convenient and classical way to think of GRFs is

as a superposition of random sine waves27,28

W (x) =

√

2

N

N
∑

n=1

sin [qn · x− ϕn] (5)

where the phases are uniformly distributed over [0, 2π) and the wavevectors q are drawn

from a user-specified density distribution over reciprocal space fW (q)dVq, referred to as the

spectral density of the field. For asymptotically large values of N , the central limit theorem

ensures that W (x) is Gaussian-distributed at any point x with average equal to zero, and

the factor in Eq. (5) ensures that the variance is equal to one.

A central characteristic of the GRF in the context of elastic scattering is its correlation

function gW (r), defined as the statistical correlation between the values of W (x) at two

points at distance r apart

gW (r) = 〈W (x)W (x+ r)〉 (6)

where the brackets have the same meaning as in Eq. (1), and the dependence is only on the

modulus r = |r| for isotropic fields. The field correlation function is obtained as the Fourier

transform of the spectral density, namely16,27

gW (r) =

∫ ∞

0

sin(qr)

qr
fW (q)4πq2dq (7)

In principle any integrable and positive function can be used as a spectral density. In

practice, in order to ensure that the structures modelled by clipping the field have finite

surface areas17,27, it is necessary to impose that the second moment of fW (q) be finite. This

enables one to define lW as
1

l2W
=

1

6

∫ ∞

0

q2fW (q)4πq2dq (8)

which we refer to as the field characteristic length. The finiteness of lW corresponds to a

quadratic behavior of the correlation function gW ≃ 1 − (r/lW )2 + . . . for small distances,

and is a condition for the modelled structures to have finite surface areas17,27.
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TABLE I. Examples of static Gaussian random fields (GRFs) with their spectral densities fW (q), field correlation functions gW (r), and

characteristic lengths lW . The function w(|x|) is the corresponding elementary wave relevant to a dilution approach (see text, l and µ are

model parameters). These functions are plotted in Figs. SM-1 to SM-8 of the Supplementary Material.

GRF# fW (q) gW (r) lW w(x)a Ref.

1 l2

16π3 δ[q − 2π
l ]

sin[2πr/l]
2πr/l

√
6l/(2π) -b 16

2
(

l
2
√
π

)3
e−[ql]2/4 e−[r/l]2 l e

−2
(

|x|
l

)2

5,29

3 l2

4q
sinh[πql/2]
1+cosh[πql]

1
cosh[r/l]

√
2l -b 18

4
(

l√
π

)3
1

480 (ql)
4e−[ql]2/4

[

1− 4
3

(

r
l

)2
+ 4

15

(

r
l

)4
]

e−(
r
l )

2 √

3/7l

[

(

|x|
l

)2
− 3

4

]

e
−2

(

|x|
l

)2

5 l3

4π2µ
sinh[π2/µ] sinh[πql/(2µ)]/(ql)

cosh[2π2/µ]+cosh[πql/µ]
sin[2πr/l]

(2πr/l) cosh[µr/l] l/
√

2π2

3 + µ2

2 -b 18

6
(

l√
π

)3 Γ(µ+ 3
2
)

Γ(µ)[1+(ql)2]
3
2+µ

21−µ (r/l)µKµ(r/l)
Γ(µ+1) 2l

√
µ− 1

(

|x|
l

)
µ
2
− 3

4
Kµ

2
− 3

4

(

|x|
l

)

5,29

7
(

l√
π

)3
Γ(µ+1)

Γ(µ− 1
2
)
[1− (ql)2]µ−

3
2 2µΓ(µ+ 1)

Jµ(r/l)
(r/l)µ 2l

√
µ+ 1

(

|x|
l

)−µ
2
− 3

4
Jµ

2
+ 3

4

(

|x|
l

)

5 -c

8 Piecewise Linear Cf. Sup. Info. Cf. Sup. Info. -b 9

a: within unspecified normalizing factor; b: not available; c: a typo in the formula provided for fW (q) has been corrected in the present

table.
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The methods developed in the paper apply to any static Gaussian field. A few examples

are given in Tab. I with explicit spectral densities, correlation functions, and characteristic

lengths lW , which are also plotted in Figs. SM-1 to SM-8 of the Supplementary Material.

These fields are referred to in the rest of the paper by the number in the first column.

GRF-1 contains a single spectral component, and is arguably the simplest possible Gaussian

field. By contrast, GRF-2 is extremely polydispersed and is referred to in geostatistics as

the squared-exponential correlation function. GRF-3 is also polydispersed: its correlation

function is exponential for asymptotically large distances, but the 1/ cosh function ensures

quadratic shape at the origin and hence finite lW . GRF-4 is introduced in Sec. VB, and

leads to structures with a scattering peak. GRF-5 is obtained by multiplying the corre-

lation functions of GRF-1 and GRF-3, and provides one with a parameter to control the

polydispersity of the structure, which makes it convenient for SAS data fitting18,30. Other

examples discussed in the scattering literature can be found e.g. in Refs.7,14,31. The fol-

lowing two entries in Tab. I are classical in geostatistics but are seldom used in scattering

studies. GRF-6 is the Matérn model where Kµ is a modified Bessel function. The parameter

µ controls the smoothness of the field, which is µ − 1 times differentiable32, and GRF-2 is

obtained as a particular case for µ → ∞. By contrast to GRF-6, field GRF-7 introduces

strong correlations through Bessel function Jµ. It leads to peaked scattering functions (see

Fig. SM-7) and coincides with GRF-1 in the limit µ → 1/2.

When it comes to analyzing experimental scattering patterns, the simple analytical ex-

pressions in Tab. I seldom provide sufficient flexibility for data fitting. Therefore, a con-

venient approach consists in linearly combining independent Gaussian fields Wi(x), with

spectral densities f
(i)
W (q), so as to create a composite field

W (x) =
∑

i

σiWi(x) (9)

where σi are constants. The spectral density of the resulting field is

fW (q) =
∑

i

σ2
i f

(i)
W (q) (10)

and a similar relation holds for gW (r). Because the integral of fW (q) over the entire reciprocal

space is the variance of the field, the parameter σ2
i can be thought of as the contribution of

Wi(x) to the total variance of the composite field W (x). In that spirit, a possible approach

to data fitting would consist in combining a large number of monodispersed fields (e.g.
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GRF-1 in Tab. I), so as to approximate an experimental spectral density as a sum of

Dirac peaks. As an unpractically large number of peaks might be needed to approximate

a continuous function, a more practical approach consists in replacing the Dirac peaks by

broader functions. The piecewise-linear model (GRF-8 in Tab. I) corresponds to such an

approach, which was developed in earlier work9. As this approach was used here to fit the

SANS data in Fig. 1a, it is described in detail in the Supplementary Material (Sec. SM-3).

In particular, the influence of the number of nodes for the SANS fit shown in Fig. 1a is

illustrated in Fig. SM-10.

When generalising the Gaussian-field modelling to time-dependent structures it will prove

useful to use another construction of Gaussian fields, which is mathematically equivalent to

Eq. (5). In so-called dilution random functions,3,5,33 a field is created as a sum of localised

elementary waves w(x), randomly positioned in space, namely

W (x) =
∑

s

Asw(x− xs) (11)

where the sum is on all the seeds xs of a Poisson point process with density θ, and As is

any random amplitude satisfying 〈A〉 = 0 and 〈AsAs′〉 = 〈A2〉δss′. The latter condition

corresponds to uncorrelated wave amplitudes. In the limit of a large density of the Poisson

process, many elementary waves overlap at any given point of space so that the values of

the field defined in Eq. (11) become Gaussian distributed.

In the context of a dilution approach, the correlation function of the field is calculated

as3,5,33

gW (r) = θ〈A2〉K(r) (12)

where

K(r) =

∫

dVx w(x)w(x− r) (13)

is the self-convolution of the elementary wave. In order to ensure that the variance of the

field is equal to one, one has to impose gW (0) = 1, which requires adjusting the amplitudes so

that θ〈A2〉K(0) = 1. Although Eqs. (5) and (11) are conceptually different constructions,

the two approaches are mathematically equivalent. The spectral density of the dilution

model is indeed obtained as

fW (q) = θ〈A2〉
∣

∣

∣

∣

∫

dVx w(x) exp(iq · x)
∣

∣

∣

∣

2

(14)
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FIG. 2. Microemulsion modelling as a clipped Gaussian field, with the underlying field shown in

(a) and the structure in (b). The clipping thresholds are α = −0.234 and β = +0.234, resulting in

aqueous (white) and oil (grey) phases with volume fractions φa = φo = 0.4075, and φs = 0.185 for

the surfactant (red). The figure is a 2D cut out of a 3D realization obtained from GRF-2 of Tab.

I, with distances normalized to lW .

which results from evaluating the Fourier transform of Eq. (12). Among the static Gaussian

fields presented in Tab. I, the shape of the elementary wave is know for GRF-2, GRF-4,

GRF-6 and GRF-7. Conceptually, however, any field such that
√

fW (q) is integrable can

be thought of as resulting from a superposition of a large number of randomly positioned

elementary waves.

B. Clipping procedure

According to a classical approach, the phases of disordered systems can be modelled as

excursion sets of a Gaussian field W (x), which is also referred to as clipped-Gaussian-field

models.12,16 In the particular case of emulsions17 a convenient clipping procedure is based

on two thresholds α ≤ β, as sketched in Fig. 2. The oil phase is modelled as the points of

space where β ≤ W (x), the surfactant film-like phase as α ≤ W (x) < β, and the aqueous

phase as W (x) < α.

Because the values of W (x) are Gaussian distributed, the values of the thresholds control
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the volume fractions of the phases. The volume fraction of the oil φo, is obtained as

φo = Λ1[β] (15)

where the function Λ1[x] is the probability for a univariate Gaussian variable to take values

larger than x, which can be calculated as

Λ1[x] =
1

2

(

1− erf[x/
√
2]
)

(16)

where erf is the error function. With the same notation, the volume fraction of the surfactant

phase is

φs = Λ1[α]− Λ1[β] (17)

and the volume fraction of the remaining aqueous phase is φa = 1 − φo − φs. Relevant

values for the microemulsion of Sec. II are α = −0.234 and β ≃ +0.234, corresponding to

φf ≃ 0.185 and φa = φo = 0.4075, as used in Fig. 2.

The scattering functions are obtained from the covariances of the various phases of the

microemulsion, which are calculated from the field correlation function gW (r) and the clip-

ping thresholds α and β. In line with Eq. (3), we consider here the covariances Coo(r),

Css(r) and Caa(r), defined as the probabilities for two randomly chosen points are distance

r from one another to belong both to the oil, surfactant, and aqueous phases, respectively.

The covariances are expressed in terms of the bivariate error function Λ2[α, β, g], defined

as the probability for two correlated Gaussian variables, with correlation g, to take values

larger than α and β, respectively13. Explicitly the expressions are17,28

Coo(r) = Λ2[β, β, gW (r)] (18)

for the oil phase,

Css(r) = Λ2[α, α, gW (r)] + Λ2[β, β, gW (r)]− 2Λ2[α, β, gW (r)] (19)

for the surfactant phase, and

Caa(r) = 1− 2Λ1[α] + Λ2[α, α, gW (r)] (20)

for the aqueous phase. The values used to calculate the scattering functions through Eqs.

(3) are the centred covariance C̄oo(r), C̄ss(r) and C̄aa(r), obtained by subtracting the corre-

sponding squared volume fraction, so as to enable their Fourier transformation through Eq.

(4).
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FIG. 3. Effect of clipping: non-linear relation between the field correlation gW and the centered

covariance C̄ = C−φ2 of the aqueous, oil, and surfactant phases, calculated from Eqs. (18-20) with

clipping constants α ≃ −0.234 and β ≃ +0.234. The relations are highly non-linear for gW ≃ 1

and linear for asymptotically small gW , which limit is relevant for asymptotically large values of

r or τ . The dashed lines are the asymptotic approximations for gW → 1 calculated through Eq.

(23), relevant to vanishingly small r and τ .

In principle the function Λ2[α, β, g] can be calculated as two-dimensional integral of a

bivariate Gaussian distribution. Based on Dirichlet’s representation of Heaviside’s step

function, it can be calculated in the following simpler way13,17,27,28

Λ2[α, β, g] = Λ1[α]Λ1[β] +
1

2π

∫ asin[g]

0

exp

[

−α2 + β2 − 2αβ sin(θ)

2 cos2(θ)

]

dθ (21)

which requires numerically evaluating only a one-dimensional integral. For any given volume

fraction of the phases, that is for given α and β, Eqs. (18), (19) and (20) define non-linear

relations between the field correlation gW and the corresponding covariances. These relations

are illustrated in Fig. 3 for the centred covariances C̄oo, C̄aa and C̄ss, for the values of α and

β relevant to the microemulsion data. Note that the values satisfy α = −β, corresponding

to φo = φa and C̄oo(r) = C̄aa(r).

As visible in Fig. 3, for small field correlations gW the centred covariances C̄oo and C̄aa

are proportional to gW . In that region - corresponding to large r or τ - the bivariate error

function Λ2 is approximated by

Λ2[α, β, g] ≃ Λ1[α]Λ1[β] +
g

2π
exp

(

−α2 + β2

2

)

+ . . . (22)

which is the first term of a general development in terms of Hermite polynomials5,19. How-

ever, in general Λ2 is a non-linear function. In particular the relation between gW and the
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covariances of any clipped structure is vertical when gW approaches 1 (see Fig. 3). The

following asymptotic relation is useful for further purposes

Λ2[α, β, 1− ǫ2] = Λ1 [max{α, β}]− ǫ

π
√
2
e−

αβ
2 e−

(α−β)2

4ǫ2

+
|α− β|
2
√
2π

e−
αβ
2

(

1− erf

[ |α− β|
2ǫ

]

)

(23)

It is obtained by setting g = 1 − ǫ2 in Eq. (21), through a first-order expansion in ǫ. This

equation controls the shape of the covariances for asymptotically small r and τ , and therefore

the asymptotic shape of the scattering functions for large q and small τ , as we discuss in

detail later. The centred covariances approximated through Eq. (23), are shown as dashed

lines in Fig. 3.

IV. TIME-DEPENDENT CLIPPED GAUSSIAN-FIELD MODELS

We now introduce three qualitatively different dynamic models to construct time-

dependent Gaussian fields, starting from any static Gaussian field. This is achieved by

adapting Eqs. (5) or (11), by which the fields are constructed. Although the models are

quite general, the discussion is centred on static field GRF-2 of Tab. I, which has the

following spectral density

fW (q) =

(

l

2
√
π

)3

exp

[

−(ql)2

4

]

(24)

and field correlation function

gW (r) = exp

[

−
(r

l

)2
]

(25)

where l is model parameter that coincides with the characteristic length lW . With this spe-

cific field the main results can be expressed in analytical form. Moreover the corresponding

elementary wave w(x) is also known analytically (see Tab. I), which enables one to construct

realizations and visually illustrate all considered dynamic models.

All results of Sec. III remain valid for time-dependent Gaussian fields. This is notably

the case for the clipping relations between the field correlation and the covariances of the

water, oil and surfactant phases. However, the field correlation function describes here the

statistical correlation between the values of W at two points at distance r apart, with a time

lag τ , namely

gW (r, τ) = 〈W (x, t)W (x+ r, t+ τ)〉 (26)
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In this case, the covariances obtained through Eqs. (18-20) are Van-Hove correlation

functions,1,2 and the intensity obtained subsequently through Eqs. (3 - 4) is the coherent

intermediate scattering function I(q, τ).

Throughout this section, the qualitative geometrical properties of the Gaussian fields are

illustrated by clipping them at the value α = 0. This yields two-phase morphologies with

volume fractions φ = 1/2, different from the emulsion in Fig. 1. All the mathematical

results, however, are quite general and remain valid for any clipping procedure. The specific

case of the three-phase emulsion, with finite surfactant volume, is considered again in the

discussion section.

A. Dynamic model 1: independent time and space fluctuations

In the first approach, a field is created with statistically-independent space and time

fluctuations. This is achieved by starting from a series of independent static fields Wn(x),

with n = 1, . . . , N , and combining them linearly with time-dependent coefficients. The fields

Wn can be thought of as independent realisations of Eq. (5) each with different random

numbers but the same spectral density fW (q). The statistical independence is expressed as

〈Wn(x)Wm(x+ r)〉 = gW (r)δmn (27)

where δmn = 1 for m = n and 0 otherwise. Based on the set of Wn(x) the time-dependent

field is built as

W (x, t) =

√

2

N

N
∑

n=1

Wn(x) cos(ωnt− ϕn) (28)

where the phases ϕn are random and uniform over [0, 2π), and the frequencies ωn are drawn

from a temporal spectral density f ′(ω)dω. With this first dynamic model, the space and

time field correlation function in Eq. (26) is found to be

gW (r, τ) = gW (r)g′(τ) (29)

in the limit of large N , with

g′(τ) =

∫ ∞

0

cos[ωτ ]f ′(ω)dω (30)

In geostatistics, models satisfying Eq. (29) are referred to as being separable.29
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FIG. 4. Two-dimensional (x, t) cuts through four-dimensional (x, y, z, t) realizations of dynamic

model 1, with static field GRF-2 from Tab. I and exponential (a) and hyperbolic secant (b)

temporal correlation functions. The threshold assumed in the figure is α = 0, corresponding to

φ = 0.5 for the phases shown in white and grey.

A physical interpretation of separable models is obtained by noting that they can be

constructed in mathematically-equivalent way through a dilution approach, as in Eq. (11).

Indeed, the field constructed as

W (x, t) =
√
2
∑

s

Asw(x− xs) cos(ωst− ϕs) (31)

with ϕs uniformly distributed in [0, 2π), and ωs distributed according to temporal spectral

density f ′(ω), has the same correlation function as in Eq. (29). Therefore, dynamic model

1 can be interpreted as resulting from incoherently fluctuating elementary waves.

For the purpose of data modelling, a natural choice for the temporal correlation function

is the exponential g′(τ) = exp[−τ/τc], where the correlation time τc is a model parameter.

This choice corresponds to the following spectral density

f ′(ω) =
1

π

2τc
1 + (ωτc)2

(32)

A realization of the clipped Gaussian field obtained from this specific time-correlation func-

tion and static field GRF-2 is shown in Fig. 4a. The corresponding correlation function

gW (r, τ) is plotted in Fig. 5, together with the covariance assuming a single clipping thresh-

old α = 0, and the corresponding intermediate scattering function in the form of I(q, τ)/I(q).

The type of dynamics obtained from the exponential time correlation function in Fig. 4a

is extremely rugged. Smoother dynamics is obtained by modelling the temporal correlation
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FIG. 5. Correlation function gW (r, τ) for static field GRF-2 and independent space and time

fluctuations, with exponential (a1) and hyperbolic-secant (a2) time-correlation functions. The

corresponding covariance (clipping threshold α = 0) and intermediate scattering function are shown

in b1/b2 and c1/c2. The two solid lines in b1/b2 and c1/c2 highlight the values for τ = 0 and for

small yet finite τ .

function as a hyperbolic secant g′(τ) = 1/ cosh[τ/τc], which behaves like an exponential for

asymptotically large times but differs for short times. Its temporal spectral density is

f ′(ω) =
2τc cosh[πωτc/2]

1 + cosh[πωτc]
(33)

A realization of the clipped Gaussian field obtained with this expression is shown in Fig. 4b.

The corresponding correlation function gW (r, τ), covariance (for α = 0), and intermediate

scattering function are plotted in Fig. 5a2 to 5c2.

B. Dynamic model 2: dispersion relation

The second dynamic model introduces correlations between space and time fluctuations,

and belongs to the class of non-separable models.34,35 This is achieved through a disper-

sion relation that deterministically assigns a specific temporal frequency ω to any spatial

frequency q of the Gaussian field, and leads to the following generalization of Eq. (5)

W (x, t) =

√

2

N

N
∑

n=1

sin [qn · x+ ω(|qn|)t− ϕn] (34)
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FIG. 6. Two-dimensional (x, t) cuts through four-dimensional (x, y, z, t) realizations of model 2

of time-dependent Gaussian field, with GRF-2 from Tab. I, and linear (a) and quadratic (b)

dispersion relations. The threshold assumed in the figure is α = 0, corresponding to φ = 0.5 for

the phases shown in white and grey.

where ω(|q|) is the dispersion relation, which we assume to be isotropic. Based on the sta-

tistical independence of the various components of the field in Eq. (34), the field correlation

function is calculated as

gW (r, τ) =

∫ ∞

0

fW (q) cos[ω(q)τ ]
sin(qr)

qr
4πq2dq (35)

in the limit of asymptotically large N .

In principle any suitable function can be used to model a dispersion relation. We consider

here two simple analytical forms ω = cq and ω = Dq2, where c and D are constants with

dimensions of velocity and diffusion coefficient, respectively. Realizations obtained with

static field GRF-2 and these two dispersion relations are given in Fig. 6a and 6b. In

the case of the linear dispersion relation the structures propagate at constant velocity c,

which appears as slanted features with slopes ±1 on the scales of the figure. In the case of

quadratic dispersion the structures propagate with size-dependent velocity, which leads to

more complicated temporal evolution.

In the particular case of static field GRF-2, analytical expressions are obtained for the

field correlation function through Eq. (35). For the linear dispersion relation, one finds

gW (r, τ) = exp

[

−r2 + (cτ)2

l2W

]

×
{

cosh

[

2rcτ

l2W

]

− 2

(

cτ

lW

)2

sinh

[

2rcτ

l2W

]

/

[

2rcτ

l2W

]

}

(36)
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FIG. 7. Correlation function gW (r, τ) for GRF-2 from Tab. I with linear (a1) and quadratic (a2)

dispersion relations, together with corresponding intermediate scattering functions (b1 and b2) for

clipping threshold α = 0.

and for the quadratic dispersion, the relation is

gW (r, τ) =

exp

[

− (r/lW )2

1+[4Dτ/l2
W ]

2

]

(

1 + [4Dτ/l2W ]
2
)3/4

cos

[

(r/lW )24Dτ/l2W

1 + [4Dτ/l2W ]
2 − 3

2
tan−1

[

4Dτ

l2W

]

]

(37)

Detailed derivations of these equations are given in the Supplementary Material (Sec. SM-4).

The correlation functions and corresponding intermediate scattering functions are plotted

in Fig. 7.

An interesting characteristic of the time-dependent structure in Fig. 6a is that it displays

temporal order in spite of being spatially disordered. The absence of any feature in gW (r, 0)

testifies to spatial disorder (see Fig. 7a1 and Fig. SM-3). By contrast, the correlation

function gW (0, τ) displays a sharp minimum at τ =
√

3/2 × lW/c. This corresponds to

situation where a fixed point of space is visited alternatively by one phase and the other

with quasi periodicity.

The temporal order is not obvious in the correlation function of the quadratic dispersion

(Fig. 7a2), but the intermediate scattering function I(q, τ) exhibits marked oscillations for

both dispersion relations (Figs. 7b1 and b2). This can be understood by noting that for

18



asymptotically large values of τ the covariance is proportional to gW (r, τ) (see the discussion

of Fig. 3), so that I(q, τ) is approximately the Fourier transform of gW (r, τ). It therefore

results from the Fourier inversion of Eq. (35) that I(q, τ) is proportional to fW (q) cos[ω(q)τ ]

for large values of τ . It is the cosine in this expression that is responsible for the observed

oscillations in Fig. 7b1 and 7b2. For the particular representation as I(q, τ)/I(q) the

oscillations are further amplified by the small value of I(q) for large q.

C. Dynamic model 3: moving waves

Experimental scattering functions seldom display the type of marked oscillations obtained

with dynamic model 2 and displayed in Fig. 7. In dynamic model 3, the temporal corre-

lations and corresponding oscillations are naturally damped through a dilution approach,

i.e. by using Eq. (11) instead of Eq. (5) to describe the Gaussian field. Explicitely, the

Gaussian field is made time-dependent by allowing the elementary waves to propagate

W (x, t) =
∑

s

Asw(x− xs − js(t)) (38)

where xs is the initial position of wave s, and js(t) is the vectorial distance it has travelled

at time t. We consider two qualitatively different cases: the ballistic or diffusive motions

of waves with velocity c or diffusion coefficient D. For static field GRF-2 the shape of the

elementary wave w(x) is known mathematically (see Tab. I), which enables one to construct

realizations as shown in Fig. 8a and b. The diffusive model displays the same type of rugged

dynamics as in Fig. 4a, which we analyze in detail in the discussion section.

The field correlation function corresponding to Eq. (38) is calculated from the time-

dependent distributions ft(j)dVj of the wave position j as follows

gW (r, τ) = θ〈A2〉
∫

K(r− j)fτ (j) dVj (39)

which generalizes Eq. (12) to time-dependent dilution processes. If the elementary waves

are compact in real space, then K(r) has a range comparable to the characteristic length

lW of the field. It therefore results from Eq. (39) that all correlations disappear as soon as

the elementary waves have travelled a distance comparable to lW , which happens in a time

lW/c or l2W/D for the ballistic or diffusive case, respectively.

19



0 10
0 

10

20
a

0 10

b

FIG. 8. Two-dimensional (x, t) cuts through four-dimensional (x, y, z, t) realizations of dynamic

model 3 with static field GRF-2 from Tab. I, and (a) ballistic and (b) diffusive propagation of

elementary waves. The threshold assumed in the figure is α = 0, corresponding to φ = 0.5 for the

phases shown in white and grey.

The case of ballistic propagation corresponds to density distribution

fτ (j) =
δ(j − cτ)

4πj2
(40)

where j = |j|, δ(.) is Dirac’s function, and the denominator accounts for the normalization

of the probabilities. With such distribution, Eq. (39) reduces to an integration on the unit

sphere, and leads to

gW (r, τ) = θ〈A2〉1
2

∫ +1

−1

K
(

√

r2 + (cτ)2 − 2rcτµ
)

dµ (41)

In the case of static field GRF-2, this can be calculated explicitly as

gW (r, τ) = exp

[

−
(

r − cτ

lW

)2
]

1− exp [−4rcτ/l2W ]

4rcτ/l2W
(42)

which is plotted in Fig. 9a1. The corresponding intermediate scattering function (assuming

α = 0) is plotted in Fig. 9b1.

In the diffusive case, the probability distribution of j is given by the classical expression

for the position of a random walker36,37

ft(j) = (4πDt)−3/2 exp

[

− |j|2
4Dt

]

(43)

For the case of static field GRF-2, Eq. (39) then leads to the following field correlation

function

gW (r, τ) =

(

1 +
4Dτ

l2W

)−3/2

exp

[

− r2

l2W + 4Dτ

]

(44)
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FIG. 9. Correlation function gW (r, τ) of model 3 for Gaussian fields GRF-2 with (a1) ballistic and

(a2) diffusive motion of elementary waves, together with corresponding intermediate scattering

functions (b1 and b2) for clipping threshold α = 0.

This function is plotted in Fig. 9a2, with the corresponding intermediate scattering function

(assuming α = 0) in Fig. 9b2.

The asymptotic behaviour of the intermediate scattering function I(q, τ) for large τ can

be understood by expressing the field correlation function in Eq. (39) in terms of the spectral

density as follows

gW (r, τ) =

∫ ∞

0

fW (q)Fτ (q)
sin[qr]

qr
4πq2dq (45)

where Fτ (q) is the Fourier transform of fτ (j). This expression results directly from Eq. (39)

by equating θ〈A2〉K(r) to the Fourier transform of fW (q). For the same reason as for model

2, the intermediate scattering function is proportional to the Fourier transform of gW (r, τ) in

the limit of asymptotically large τ . In the case of model 3, this implies I(q, τ) ≃ fW (q)Fτ (q).

In the case of the ballistic motion described by Eq. (40), the relevant value of Fτ (q) is

Fτ (q) =
sin[qcτ ]

qcτ
(46)

which explains the mild oscillations in Fig. 9b1. In the case of the diffusive motion described

by Eq. (43), the relevant function is

Fτ (q) = exp
[

−q2Dτ
]

(47)
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which explains why no oscillations are observed at all in Fig. 9b2. Finally, note that the

expression of the field correlation function in Eq. (45) relies on the spectral density and

makes no explicit reference to the elementary wave used to build the model. Therefore the

usability of dynamic model 3 is not limited to static Gaussian fields for which the form of

the elementary wave is known explicitly.

V. DISCUSSION

A. Temporal crossing rate

An interesting characteristic of the Neutron Spin-Echo (NSE) data in Fig. 1c1 and 1c2

is the very steep τ -dependence for small τ and large q. Among the three dynamic models

discussed in Sec. IV, this type of behavior was observed for model 1 with exponential time

correlation function (Fig. 5c1), and for model 3 with diffusive motion of elementary waves

(Fig. 9b2). In both cases, the realisations testify to extremely rugged dynamics as illustrated

in Figs. 4a and 8b.

A useful mathematical concept to describe the two types of dynamics in both Fig. 4 and

Fig. 8 is the temporal crossing rate nt, which characterizes how often a fixed point in space

is crossed by moving interfaces. As discussed shortly, this concept is the temporal equivalent

of the spatial notion of specific surface area. The surface area aV is defined as the total area

of an interface per unit volume of the system. For an isotropic system it is mathematically

related to the notion of average chord length, which characterizes how frequently one crosses

the interface when traveling along any straight line crossing the system.38 The significance

of the surface area for scattering was first acknowledged by Debye, who related aV to the

small-r behaviour of the covariance as39

C(r, 0) ≃ φ− aV
4
r + . . . (48)

which converts in reciprocal space to the well-known Porod’s law40–42

I(q, 0) ≃ 2πaV
q4

(49)

In the particular case of clipped Gaussian-field structures, the surface area of an isosurface,

say at W (x) = α, is calculated as17,27

aV =
2
√
2

πlW
e−α2/2 (50)
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where lW is the characteristic length of the field defined in Eq. (8).

The crossing rate nt is related to the covariance via

C(0, τ) = φ− nt

2
τ + . . . (51)

which illustrates further the similarity between nt and the surface area aV in Eq. (48). The

factor 1/2 differs from the factor 1/4 in Eq. (48) because the temporal process considered

here is one-dimensional.4 From Eq. (51) the crossing rate can be calculated as the limit of

−2(∂C/∂τ) for vanishingly small r and τ . In the case of a clipped Gaussian field model,

this limit corresponds to values of the field correlation function gW (r, τ) asymptotically close

to 1. The derivative can then be calculated using the asymptotic result in Eq. (23). The

following expression is then obtained for the crossing rate

nt =

√
2

π
e−α2/2 lim

τ→0

√

1− gW (0, τ)

τ
(52)

which provides a physical interpretation to the small-τ behavior of gW (0, τ). The condition

for having finite nt is that the field correlation function should be quadratic at the origin

gW (0, τ) ≃ 1− (τ/τW )2 + . . . (53)

which defines a natural characteristic time τW . Note that the two dynamic models of Sec.

IV displaying rugged dynamics both have correlation functions that are linear at the origin.

In the case of model 1 with exponential correlation function, Eq. (29) leads to

gW (0, τ) = 1− τ/τc + . . . (54)

and in the case of model 3 with diffusive wave motion, Eq. (44) leads to

gW (0, τ) = 1− 6Dτ

l2W
+ . . . (55)

In both cases τW is not defined and Eq. (52) predicts infinite crossing rate. The effect of

linear versus quadratic correlation at short times is illustrated further in Fig. 10.

Whether the crossing rate nt is finite or infinite controls the shape of the intermediate

scattering function I(q, τ) for asymptotically large q and small τ (see Figs. 5 and 9). The

analysis builds on the following two mathematical facts. (i) First, the non-linearity of the

clipping function at gW = 1 is of the type C ≃ 1 − √
1− gW (see Fig. 3 and Eq. 23). In

particular, this converts a quadratic field correlation gW (r, τ) ≃ 1−r2 into a linear covariance
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FIG. 10. Field correlation functions at a fixed point in space gW (0, τ) for dynamic model 1 with

exponential (blue) and hyperbolic-secant (black) temporal correlation functions. The insets are

realizations of the time-dependent Gaussian fields at a fixed point in space, together with clipped

structure with α = 0, for the exponential (a) and hyperbolic-secant (b) models. The dashed line

highlights the quadratic shape of the hyperbolic-secant model at the origin.

C(r, τ) ≃ 1− r. This also converts a linear field correlation gW (r, τ) ≃ 1− τ into a singular

covariance C(r, τ) ≃ 1 − √
τ . (ii) Second, the asymptotic behavior of I(q, τ) for large q

is controlled by the small-r behavior of C(r, τ). This results from a generalization of the

Riemann-Lebesgue lemma by Lighthill27,43, and is shortly discussed in the Supplementary

Material (Sec. SM-6). In particular, a covariance that is linear at the origin C(r, 0) = 1− r

leads to a 1/q4 scattering, in line with Porod’s law in Eq. (49). By contrast, a covariance

whose derivatives all vanish at r = 0 leads to a scattering that decreases faster than any

power law.

Consider now the case where τW exists, i.e. where gW (r, τ) is quadratic in τ at the

origin, and C(r, τ) is linear in τ (e.g. Figs. 5b2). In that case Porod’s law holds not only

for I(q) but also for I(q, τ) for small τs, because C(r, τ) is a smooth function of τ . As

a consequence I(q, τ)/I(q) approaches the value 1 horizontally for τ → 0 (Fig. 5c2). By

contrast, if τW is not defined the covariance C(r, τ) varies like
√
τ , which has infinite slope

for τ → 0. Accordingly C(r, τ) passes from being linear in r to having vanishing derivative

over infinitesimally short interval of τ (Fig. 5b1). The intermediate scattering function

I(q, τ) passes discontinuously from Porod’s law for τ = 0 to decreasing faster than q−4 for

arbitrarily small τ > 0. This explains the very steep intermediate scattering function I(q, τ)
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for large q and small τ in Fig. 5c1. The same explanation holds for Fig. 9b2.

In the case of model 1 the existence τW and the finiteness of nt can be ascertained by

direct examination of g′W (τ). In the case of model 2, one has to examine both the dispersion

relation and the spectral density. Assuming a dispersion relation of the type

ω(q) = anq
n (56)

where an and n are constants, a truncated expansion of the cosine factor in Eq. (35) leads

to
1

τ 2W
=

a2n
2

∫ ∞

0

fW (q)q2n4πq2dq (57)

In the particular case of a linear dispersion relation, with a1 = c, the characteristic time

is proportional to the characteristic length τW = lW/(c
√
3). However, for exponents n

larger than one the conditions are more stringent for τW than for lW . The condition for

non-vanishing τW is that the spectral density fW (q) should decrease faster than q−ν with

ν = 2n + 3 (see also Sec. SM-VII in the supporting information) . Finally, in the case of

model 3, it results from Eq. (45) that the ballistic case always leads to finite nt, provided lW

is finite. Replacing Eq. (46) by a truncated expansion for small τ , the following expression

is indeed obtained

gW (0, τ) ≃ 1−
(

cτ

lW

)2

+ . . . (58)

which shows that τW = lW/c. By contrast, in the diffusive case, gW (0, τ) is linear in τ and

nt is always infinite, as already shown in Eq. (55). The latter equation holds for all spectral

densities, and it is not limited to static field GRF-2.

B. NSE data analysis

The developed approach offers the possibility of decomposing a given static structure

into distinct contributions, and building composite time-dependent models whereby each

structural contribution is animated according to different dynamic models. In the particular

case of the microemulsion, the static SANS data hint at two types of structures as illustrated

in Fig. 11. A distinctive feature of the SANS is the presence of a sharp scattering peak

in the bulk contrast data around 0.03 Å−1, corresponding to strongly correlated structures.

That peak alone, however, does not describe the entire SANS as it is superimposed with

a more diffuse and featureless background scattering that extends over the entire q range.
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FIG. 11. (a) Fitting of the microemulsion SANS patterns of Fig. 1 as a sum of two static GRF

contributions, with bulk and film contrasts in red and grey, respectively. The dots are the data, and

solid lines are the fits. The two contributions to the spectral density and the correlation functions

are shown in b and c, with background contribution (GRF-2, dotted), correlated contribution

(GRF-4,dashed) and their sum shown as a solid line.

We now endeavour to model these two contributions with suitable Gaussian fields, and use

these SANS-born models to explore the NSE data.

A natural choice for modelling the background-like contribution in the SANS is the static

field GRF-2, which was used for illustrative purposes throughout Sec. IV. As the spectral

density of GRF-2 (see Eq. 24) displays no peak, it is not suitable to model the correlated part

of the structure. For the latter contribution, we introduce a new static field, the elementary

wave of which is built as the Laplacian of GRF-2, namely

w(x) =

[

( |x|
l

)2

− 3

4

]

exp

[

−2

( |x|
l

)2
]

(59)

The static properties of this field are given in Tab. I under the name GRF-4. By construction

the elementary wave in Eq. (59) satisfies
∫

w(x)dVx = 0 (60)

This is equivalent to fW (0) = 0 by virtue of Eq. (14), which leads to the desired scattering

peak in the SAS patterns (See also Fig. SM-4). Interestingly, in the context of moving-wave

dynamic models (model 3) when a given volume is crossed by any wave satisfying Eq. (60)
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the local average value of the Gaussian fieldW (x) remains unchanged, in a neighbourhood of

size larger than lW . Therefore, the propagation of the elementary wave in Eq. (59) preserves

locally the volumes of the phases. We therefore refer to GRF-4 as a deformation mode. The

volume-preservation property can also be understood by noting that the low-q limit of the

scattered intensity is proportional to the compressibility of the phases44 so that a spectral

density that vanishes for q → 0 corresponds to incompressible phases. By contrast, GRF-2

leads to local modifications of the the volumes, and we refer to it as a breathing mode. The

spectral densities of these two modes are illustrated in Fig. 11b.

To analyze the microemulsion SANS data the breathing and deformation modes were

combined into a single Gaussian field, following Eq. (9). This leads to a three-parameter

static-field model, with the characteristic lengths of each mode and their relative contribution

to the field variance. The clipping thresholds α = −0.234 and β = +0.234 are imposed by

the volume fractions. The least-square fit of both bulk- and film-contrast data is illustrated

in Fig. 11. The breathing mode contributes 70 % of the variance (σ2
b ≃ 0.7) with lengths

ld ≃ 98 Å and lb ≃ 65 Å for the deformation and breathing modes. These numerical values

of ld and lb coincidentally correspond to the same characteristic lengths lW ≃ 65 Å(see Tab.

I).

In order to analyze the NSE data, a dynamic model has to be assumed for each mode. As

the notion of breathing and deformation is inspired by an elementary-wave interpretation we

restrict the analysis to model 1 (fluctuating waves) and model 3 (ballistically or diffusively

propagating waves). Moreover, as the NSE data exhibit steep slope for large q and small

τ (Fig. 1c1-c2), we consider only the exponential correlation function for model 1 with

infinite crossing rate nt. In the following, we explore systematically all combinations of the

three types of dynamics for the two modes, which leads to nine composite time-dependent

Gaussian fields. The least-square fits of the NSE data are illustrated in Fig. 12, and the

values of the corresponding parameters and χ2 are reported in Tab. II. The fitting required

the correlation function gW (r, τ) to be known for the deformation mode (GRF-4), for both

ballistic and diffusive wave propagation. All details are provided in Sec. SM-V of the

Supplementary Material.

Globally, none of the composite models in Fig. 12 is able to quantitatively account for

both the bulk- and film-contrast NSE data. The model that fares worst is the one that

assumes ballistic wave propagation for both breathing and deformation modes. This model
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FIG. 12. Fitting of the microemulsion NSE data with the composite breathing-and-deformation

model (GRF-2 and GRF-4), with the dynamics of the modes modelled either as (i) fluctuations,

(ii) ballistic waves, or (iii) diffusive waves. From top to bottom: the breathing mode is assigned

fluctuation (a), ballistic (b), or diffusive dynamics (c). From left to right: the deformation mode

is assigned fluctuation (1), ballistic (2), or diffusive dynamics (3). In each case the dots are the

data with bulk (grey) and film (red) contrasts, and the surface is the model. The corresponding

parameters are in Tab. II.

has finite crossing rate nt, and is unable to capture the steep experimental intermediate

scattering function. Based on the χ2 values in Tab. II, the data is best described when

both modes have diffusive dynamics. More generally, it is interesting to note that the

calculated intermediate scattering functions in Fig. 12 are generally smaller than the data,

particularly for the film-contrast scattering, so that the breathing and deformation-mode

approach overestimates the dynamics. This is also manifest in the values of Tab. II, which

often converge towards the lower limits allowed on the parameters. This means that one of

the two modes is practically static and does not contribute to the dynamics.

As an alternative to the composite model based on breathing and deformation modes,

the stochastic models offer the possibility of a more general approach based on a dispersion

relation (dynamic model 2). This enables one to better match experimental data by tuning
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Deformation mode

Fluct. (τd) Ball. (cd) Diff. (Dd)
B
re
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h
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g
m
o
d
e F

lu
ct
.
(τ

b
) τb = 1000 ns∗

τd = 519 ns

(χ2 = 10)

τb = 130 ns

cd = 0.088 Å/ns

(χ2 = 11)

τb = 1000 ns∗

Dd = 1.3 Å2/ns

(χ2 = 8.2)

B
al
l.

(c
b
) cb = 0.001 Å/ns∗

τd = 429 ns

(χ2 = 9.6)

cb = 0.82 Å/ns

cd = 0.003 Å/ns

(χ2 = 14)

cb = 0.001 Å/ns∗

Dd = 1.7 Å2/ns

(χ2 = 7.4)

D
iff
.
(D

b
) Db = 4.0 Å2/ns

τd = 1000 ns∗

(χ2 = 8.4)

Db = 8.6 Å2/ns

cd = 0.081 Å/ns

(χ2 = 7.6)

Db = 0.001 Å2/ns∗

Dd = 1.7 Å2/ns

(χ2 = 7.4)

TABLE II. Parameters of the composite model, whereby each mode (breathing or deformation,

both with lW ≃ 65 Å) is assigned either a fluctuating, ballistic or diffusive dynamics. The values

were obtained from the least-square fits in Fig. 12, and the χ2 values are also reported. The stars

highlight values that have converged to the lower bound allowed for the fit.

the dynamics in a scale-dependent way through the value of q. Moreover, the dispersion-

relation approach does not require one to explicitly decompose the SANS into substructures,

so that the same piecewise-linear spectral density (GRF-8) as in Fig. 1a and SM-10 can be

used to describe the underlying static Gaussian field.

Although any dispersion relation can in principle be chosen to model the NSE data,

it is desirable that it should lead to an infinite crossing rate nt so as to capture the steep

intermediate scattering function. As discussed in Sec. SM-III of the Supplementary Material,

the spectral density of the piecewise-linear model decreases asymptotically as q−6 so that any

dispersion relation with order n > 3/2 would lead to infinite nt. In practice, the following

dispersion relation is found to describe fairly the NSE data

ω = a(q − qc)
3H [q − qc] (61)

where H() is Heaviside’s step function, qc is a cutoff frequency, and the parameter a sets

the value of ω. The least-square fit is illustrated in Fig.13 and in Fig. SM-12 as 2D plots.

The values of the fitted parameters are a ≃ 2050± 60 Å3/ns and qc ≃ 0.047± 0.0002 Å−1,

resulting in χ2 = 6.3, which is a significant improvement compared to the values in Tab. II.
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FIG. 13. Least-square fit of the NSE data from Fig. 1 with a dispersion relation (dynamic

model 2) and a static field with piecewise-linear spectral density (GRF-8, same as Fig. 1a), for

both bulk contrast (a) and film contrast (b). The dispersion relation is Eq. (61) with parameter

a ≃ 2053 Å3/ns and qc ≃ 0.047 Å−1, resulting in χ2 = 6.3. The surfaces are the model and the

dots are the data, with errorbar ±2σ.

The reported uncertainties on a and qc were obtained from a Monte-Carlo estimation, with a

±2σ normal-distributed error on each NSE data point. The small errors on the parameters

results from the fact that all the NSE data - over the entire q and τ ranges, and for the

two contrasts - are fitted jointly with only two adjustable parameters which makes it quite

robust. This also offers the prospect of reducing the number of experimental data points

needed to reliably adjust a model (see Fig. SM-15).

As an alternative to Eq. (61) the NSE data were also fitted with a dispersion relation

modelled as a sum of power laws (from n = 1 to n = 4) with adjustable factors. Such fit

converges to a situation where factors with alternating signs contribute to keeping ω close

to zero for small q, leading to an overall shape similar to the cutoff frequency used in Eq.

(61) (see Fig. SM-13).

The q3 dependence assumed in Eq. (61) appears in a variety of dynamic structure fac-

tors involving hydrodynamic interactions, although the specifics of the relaxation curve are

system-dependent. The exponent 3 notably appears in the Zimm model of polymers in sol-

vents to describe the thermally driven fluctuations of a polymer chain45,46. It also appears

in the Zilman-Granek analysis of membrane fluctuations with bending rigidity47. In the

present context this can be understood from the following general scaling argument. The

very observation of infinite nt hints at thermal random motion. By itself, this would lead to
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FIG. 14. (a) Time-dependent realizations of the model of Fig. 13 over 50 ns, with oil in grey,

surfactant in red, and water in white; (b) realization from the static components of the field only,

corresponding to spectral density limited to q < qc; (c) average oil density calculated over the

duration of the simulation; (d) average oil density profile as a function of distance to the interface

of the static components (d is positive into the oil). The blue area highlight the 80 % confidence

interval, with width ≃ 60 Å. The four curves in d were obtained from independent realizations.

a quadratic dispersion relation ω = Dq2, where the diffusion coefficient D is related to the

characteristic size L by Stokes-Einstein relation D ≃ kBT/(ηL), where kBT is the thermal

energy and η is the viscosity of the medium. In the case of microemulsion deforming over a

variety of length scales, inversely related to the scattering vector L ∼ q−1, this suggests the

following cubic dispersion relation

ω ∼ kBT

η
q3 (62)

Using the value η ≃ 10−3 Pa.s for the effective viscosity of the water/decane microemulsion

as reported in ref.22 the factor in this scaling law takes the value 4000 Å3/ns, which is of

the same order of magnitude as the value inferred from the NSE data fitting.

The time-dependent structure of the microemulsion is illustrated in Fig. 14 with a

particular realization of the dispersion-relation model over a time interval of 50 ns. One

notes in particular the stability in time of large-scale structures, larger than approximately
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2π/qc ≃ 130 Å, where qc is the cutoff frequency from Eq. (61). The average position of the

oil and water phases does not change over the timescale of the figure. However, the inter-

faces deform in random and very rugged way at smaller scale, as typically expected from

a system with infinite crossing rate nt. This picture matches the physical intuition as the

redistribution of oil and water over long distances occurs through slow hydrodynamic flow,

while no such obstacle exists for the local fluctuations. This scale-dependence is captured by

the Stokes-Einstein relation, and is responsible for the observed q3 dynamics. On the other

hand, the physical origin of the cutoff size qc remains unclear, although its phenomenology

is reminiscent of de-Gennes narrowing, whereby relaxation times are often observed to scale

with the scattering structure factors48.

In order to better understand the realizations of the fitted model, the structure was

further decomposed into its static and time-dependent components. The realisation in Fig.

14b was obtained by setting to zero all components of the spectral density fW (q) with q > qc,

which results in much smoother interface. This is manifest in the characteristic lengths of

the field (Eq. 8), which pass from lW ≃ 52 Å to lW ≃ 73 Å. Based on Eq. (50) this

corresponds to surface areas aV ≃ 170 m2/cm3 and aV ≃ 120 m2/cm3, respectively. The

thermal fluctuations of the interface therefore contribute to as much as 30 % of the area

of the interfaces. Due to the symmetry of the model (with clipping constants α = −β)

the surfactant/oil and surfactant/water interfaces have identical areas. Another interesting

aspect of the fluctuations is their amplitude, which can be estimated by evaluating first the

average density, say, of oil over the entire duration of a simulation. This is illustrated in

Fig. 14c, where the smooth transition between the white and black areas correspond to

all the successive positions of the interface over time. The extent of the transition in the

direction locally orthogonal to the interface is given in Fig. 14d. During 80 % of the time,

the interface fluctuates within a 60 Å-thick layer that extends on both sides of the average

position. It is interesting to compare that value to the size of the oil and water phases,

estimated as an average chord length38 as 4φ/aV ≃ 130 Å for the average structure in Fig.

14b. In other words, the interface fluctuates over distances as large as half the size of the

phases.

The dispersion-relation analysis hints at reasons why the breathing and deformation-

mode analysis was unable to account for the NSE data of the emulsion. The dispersion

relation points indeed at two dynamic regimes but they are separated by a cutoff frequency,
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which is much sharper a transition than between GRF-2 and GRF-4. It has also to be

noted that the very concept of independent modes contributing additively to the dynamics,

is strictly justified only as a linear approximation. Given the observed large amplitude of

the interface fluctuations, non-linear effects could be expected which would rule out any

possibility of linear-mode decomposition.

VI. CONCLUSION

Clipped Gaussian field models have been extensively used to analyze the elastic small-

angle scattering data of disordered systems. When applied to dynamical systems, such

classical approach provides static snapshots of a structure. In the paper, the models are

generalised to make them time-dependent, which enable one to analyze consistently both the

instantaneous spatial structures and their dynamics within a single statistical description.

General expressions are derived for all the space- and time-correlation functions relevant

to coherent inelastic neutron scattering, for multiphase systems and arbitrary scattering

contrasts between the phases.

With the proposed approach, for any given static structure inferred e.g. from small-angle

scattering, a variety of distinctly different dynamics can be modelled. In a first family of

models, the Gaussian field underlying the structure is decomposed into a large number of

localised elementary waves. Qualitatively different dynamics are obtained by letting the

waves randomly fluctuate, or propagate ballistically or diffusively through the system. In

another family of models, the spectral components of the Gaussian field are assigned any

desired dynamics through a suitable dispersion relation. The various types of dynamics lead

to qualitatively different intermediate scattering functions, which enables one to discriminate

them through neutron scattering. Moreover, all these approaches can be combined to yield

models with composite and possibly realistic dynamics.

A central characteristic of the dynamic models, which controls the shape of the interme-

diate scattering functions, is their temporal crossing rate. This is defined by considering a

fixed point in space, and evaluating how often it is passed through by a moving interface of

the time-dependent structure. Systems undergoing Brownian-like thermal fluctuations have

infinite crossing rate, which converts to infinitely steep intermediate scattering functions for

asymptotically large q and small τ .
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The methods of the paper were illustrated with the analysis of neutron small-angle scatter-

ing and spin-echo data measured on oil/water microemulsions. The methodology consisted

in analyzing first the SANS data in order to determine the spectral density of the Gaussian

field underlying the static structure, corresponding to snapshots of the time-dependent struc-

ture. As a second step, the NSE data was analyzed by complementing the so-determined

static spectral density with few dynamic parameters. This enabled us to analyze jointly the

entire SANS and NSE data, in both film and bulk contrasts and over the entire range of q

and τ , with a single coherent model. The small number of adjusted parameter contributes

to the robustness of the NSE analysis, and offers the prospect of reducing the number of

experimental points required to reliably adjust a model.

From a physical perspective, the SANS and NSE data of the emulsion point to a static

large-scale structure of the oil and water domains, with thermal fluctuations of the interfaces.

The interface fluctuations take place over distances as large as 60 Å, corresponding to half

the domain size, and contribute to 30% of the total interface area. In future work the

stochastic approach will be explored further to analyze the wavelike dynamics observed by

neutron spin-echo in lipid membranes49.

SUPPLEMENTARY MATERIAL

See supplementary material for the mathematical derivation of some equations, for nu-

merical data-analysis procedures, as well as for additional figures.

DATA AVAILABILITY

All SANS and NSE data discussed in the paper can be downloaded from the authors’

institutional repository at https://doi.org/10.26165/JUELICH-DATA/DJ3LIN.
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