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ABSTRACT

Converting neutron scattering data to real-space time-dependent structures can only be achieved through suitable models, which is partic-
ularly challenging for geometrically disordered structures. We address this problem by introducing time-dependent clipped Gaussian field
models. General expressions are derived for all space- and time-correlation functions relevant to coherent inelastic neutron scattering for mul-
tiphase systems and arbitrary scattering contrasts. Various dynamic models are introduced that enable one to add time-dependence to any
given spatial statistics, as captured, e.g., by small-angle scattering. In a first approach, the Gaussian field is decomposed into localized waves
that are allowed to fluctuate in time or to move either ballistically or diffusively. In a second approach, a dispersion relation is used to make
the spectral components of the field time-dependent. The various models lead to qualitatively different dynamics, which can be discriminated
by neutron scattering. The methods of this paper are illustrated with oil/water microemulsion studied by small-angle scattering and neutron
spin-echo. All available data—in both film and bulk contrasts, over the entire range of g and 7—are analyzed jointly with a single model. The
analysis points to the static large-scale structure of the oil and water domains while the interfaces are subject to thermal fluctuations. The
fluctuations have an amplitude of around 60 A and contribute to 30% of the total interface area.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0053446

I. INTRODUCTION robustness of the analysis by avoiding an unnecessarily large number

of parameters.” In that spirit, stochastic models have often been

Neutron scattering is one of the few experimental techniques
that allow one to probe both the structure and the dynamics of physi-
cal systems at the angstrom scale.' Typically, structural information
is obtained through the elastic scattering of cold or thermal neutrons
(SANS). The dynamic information is obtained through inelastic and
quasi-elastic scattering, as the neutrons gain or lose energy when
they interact with moving phases in the system. As for most scatter-
ing techniques, however, converting experimental data to real-space
and time-dependent structures can be challenging. This is particu-
larly the case for complex and disordered structures that cannot be
described in simple geometrical terms.

When studying disordered systems, stochastic models often
provide a practical compromise between geometrical realism and
mathematical simplicity. The former is necessary to account for as
many geometrical features as possible, and the latter improves the

used to analyze small-angle scattering data from a variety of physi-
cal systems and reconstruct their structure.’ '’ In the present paper,
we generalize this type of approach to analyze and model time-
dependent structures investigated by inelastic neutron scattering.

This paper focuses specifically on a family of descriptive mod-
els based on clipped Gaussian random fields. These models originate
in the work of Cahn on spinodal decomposition,'' but they have
since been used as general geometrical models of disordered struc-
tures in a variety of contexts, including porous materials,”'*'* poly-
mers,'*'” emulsions,'*!” gels,'® confined liquids,'”*” and nanoparti-
cles.”! Gaussian random fields are comprehensively characterized by
their correlation function, which makes them particularly useful in
the context of scattering studies.

The theoretical developments of the present paper are illus-
trated on previously published elastic and inelastic neutron
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scattering data measured on water/oil microemulsion, which are
presented shortly in Sec. II, together with some general results per-
taining to elastic and inelastic neutron scattering. Section III cov-
ers some classical results of static Gaussian field models, which are
generalized to time-dependent structures in Sec. IV. Three fami-
lies of dynamic models are proposed, which are applicable to any
static Gaussian field and endow it with qualitatively different time-
dependence. In Sec. V, some aspects of the models relevant to inelas-
tic scattering are discussed, and the models are used to analyze the
microemulsion data.

Il. NEUTRON SMALL-ANGLE SCATTERING
AND SPIN-ECHO DATA

The methods and models developed in the paper are illustrated
with published neutron small-angle scattering (SANS) patterns and
neutron spin-echo (NSE) data measured on a water/oil microemul-
sion stabilized with a surfactant.””** The relevant data are available
on the author’s institutional repository,”* and they are displayed in
Fig. 1.

The bicontinuous phases of the microemulsion consisted in
water and decane with decyl-polyglycol-ether (CioE4) as a surfac-
tant. The volume fractions of the three phases were ¢, ~ 0.4075,
¢, ~ 0.185, and ¢ , = 0.4075 for oil, surfactant, and aqueous phases,
respectively. Small amounts (0.25 wt. %) of homopolymers were
dispersed in the continuous phases in order to slightly modify
their viscosity and the efficiency of the surfactant (see Refs. 22
and 23), namely, polyethylene oxide (PEO) in water and polyethy-
lene propylene (PEP) in decane. The molecular weights slightly

1(q) (arb. units

0 0.05 0.1
q(Ah)

FIG. 1. Neutron Small-Angle Scattering data (SANS) (a) measured on a
microemulsion in bulk (gray) and film (red) contrasts, together with the structure
reconstructed from it as a clipped Gaussian field model (b1): field, (b2): clipped
structure with oil in gray and surfactant in red). The neutron spin-echo (NSE) data
measured in the same conditions are shown in (c1) and (c2). In the SANS patterns
(a), the dots are the experimental values, and the solid lines are the fitted model.
The values in the Gaussian field shown in (b1) range from —2.5 (blue) to +2.5
(yellow). The error bars are +2¢ for both SANS and NSE.
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differed in SANS (10 kg/mol) and NSE (5 kg/mol) experiments,
which has only minor effects for the purposes of this study on
the relaxation rate in the NSE experiments (<10%), but gave a
complete set of SANS and NSE data. The microemulsion was pre-
pared in two different neutron scattering contrasts by exchanging
hydrogen with deuterium. In the so-called bulk contrast, deuter-
ated water (D,O) was used with a protonated surfactant and
oil, which results in a contrast between the water domains and
the oil-surfactant domains. In film contrast, decane was deuter-
ated as well, leaving only the protonated surfactant film visible
in the deuterated water/oil surrounding. The SANS experiments
were conducted on the KWS-2 small-angle scattering instrument
at the DIDO reactor of Forschungszentrum Jilich, and the NSE
experiments were conducted on the IN15 instrument at the Insti-
tut Laue-Langevin in Grenoble. The resolutions of the SANS and
NSE data in Fig. 1 are 03" = 0.0034 A™" and 0}*" = 0.0085 A™",
respectively.

Microemulsions are strong coherent scatterers so that incoher-
ent scattering from individual atoms (mainly hydrogen) does not
play a significant role at the length scales discussed in this paper.
Therefore, the central structural characteristic of the microemulsion
relevant to both the SANS and NSE data is the scattering-length
correlation function,>>°

Co(r7) = (p(x. )p(x + 1,1 + 7)) — (p)’, 1)

which characterizes the statistical correlation between the scattering-
length density p at two points at a distance r apart and time lag 7.
Throughout this paper, we assume statistical isotropy so that corre-
lation functions depend only on the modulus of the distance r = [t|.
In Eq. (1), the brackets () stand for the average value, evaluated over
all accessible positions x and times ¢. For the type of ergodic models
considered later in the paper, they can also be thought of as ensemble
averages.>’

When working with stochastic models, it is convenient to intro-
duce the concept of covariance,”” which is occasionally also referred
to as two-point probability functions® or stick-probability func-
tions.”® The covariance of, say, the oil phase o of the microemulsion
is defined as the probability for two points at distance r from one
another to belong to that phase at two moments separated with time
lag 7, namely,

Coo(7,7) = Prob[(x € 0 attime ¢) & (x +r € 0 attime t + 7)]. (2)

As this generalizes to cross-covariances for two points belonging to
two distinct phases, the name self-covariance is occasionally used
to insist that the two points belong to the same phase. Because
each of the three phases of the microemulsion—oily, aqueous, and
surfactant—has a specific scattering-length density, the correlation
function C,(r) is a linear combination of the covariances of the
phases. Out of the six self- and cross-covariances that are defined
for a three-phase system, only three are linearly independent.* A
convenient expression for C, is therefore'”

Cp(T, T) = (Po _P:)(Pa - Pa)[cou(r) T) - ¢§]
+(ps = po) (ps = ) [Css(1:7) = ¢7]
+ (Pa = po)(pa = ps)[Caa(r,7) = 62, (3)
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where p , p, and p, are the scattering-length densities of the oil, sur-
factant, and aqueous phases, respectively, and Cyo, Css, and Caq are
the corresponding self-covariances. A derivation of Eq. (3) is pro-
vided in the supplementary material (Sec. SM-I). The bulk contrast
relevant to Fig. | correspond to p, = p, # p,, in which case C, is pro-
portional to C,e. The film contrast corresponds to p o =Pt P and
in that case, C, is proportional to Cg.

The coherent inelastic neutron scattering data are expressed in
terms of the intermediate scattering function I(g, 7). The latter is
defined as the Fourier transform of the correlation function C, (r,7),
namely,?

I(g,7) = /Ooomléirqr)cp(r,rﬂmzdr (4)

and the instrument resolution is accounted by multiplying C, by a
spread function with width o, prior to Fourier transform. The situ-
ation relevant to SANS is elastic scattering corresponding to I(g,0),
to which we refer simply as I(g) when there is no ambiguity. The
data measured in NSE instruments are I(q,7)/I(q), as given in
Figs. 1(c1) and 1(c2) for the microemulsion.

In Fig. 1, the SANS data in both film and bulk contrasts
were fitted jointly with a clipped Gaussian field model, adapting
a procedure developed elsewhere.” For the sake of completeness,
the detailed procedure is described in the supplementary material
(Sec. SM-IIL.C). A realization of the model is shown in Fig. 1(b).

I1l. CLIPPED GAUSSIAN FIELD MODELS
A. Static Gaussian random fields

We focus here on static, that is, time-independent, Gaus-
sian random fields (GRFs), and we introduce time-dependence in
Sec. IV. A convenient and classical way to think of GRFs is as a

superposition of random sine waves,””*

N
W(x) = %Z sin[qn X — (pn], (5)
n=1

where the phases are uniformly distributed over [0,27) and the
wavevectors q are drawn from a user-specified density distribution
over reciprocal space f,(q)dVy, referred to as the spectral density
of the field. For asymptotically large values of N, the central limit
theorem ensures that W (x) is Gaussian-distributed at any point x
with average equal to zero, and the factor in Eq. (5) ensures that the
variance is equal to one.

A central characteristic of the GRF in the context of elastic
scattering is its correlation function g, (r), defined as the statisti-
cal correlation between the values of W(x) at two points at distance
r apart,

gw(r) = (WE)W(x+r)), (6)

where the brackets have the same meaning as in Eq. (1), and the
dependence is only on the modulus r = |¢| for isotropic fields. The
field correlation function is obtained as the Fourier transform of the
spectral density, namely,'**’

g(r) = [T oy (grang'ay o)

ARTICLE scitation.org/journalljcp

In principle, any integrable and positive function can be used as a
spectral density. In practice, in order to ensure that the structures
modeled by clipping the field have finite surface areas,'”*” it is nec-
essary to impose that the second moment of £, (q) be finite. This
enables one to define I as

1 1 [
7= g/o q’ fw(q)4nq dq, (8)
w

which we refer to as the field characteristic length. The finiteness of
lw corresponds to a quadratic behavior of the correlation function
gw~1- (1'/lw)2 + .- for small distances and is a condition for the
modeled structures to have finite surface areas.'”*’

The methods developed in this paper apply to any static Gaus-
sian field. A few examples are given in Table I with explicit spectral
densities, correlation functions, and characteristic lengths Iy, which
are also plotted in Figs. SM-1-SM-8 of the supplementary material.
These fields are referred to in the rest of this paper by the number
in the first column. GRF-1 contains a single spectral component and
is arguably the simplest possible Gaussian field. By contrast, GRF-
2 is extremely polydispersed and is referred to in geostatistics as
the squared-exponential correlation function. GRF-3 is also poly-
dispersed: its correlation function is exponential for asymptotically
large distances, but the 1/cosh function ensures quadratic shape at
the origin and hence finite lw. GRF-4 is introduced in Sec. V B and
leads to structures with a scattering peak. GRF-5 is obtained by mul-
tiplying the correlation functions of GRF-1 and GRF-3 and provides
one with a parameter to control the polydispersity of the structure,
which makes it convenient for SAS data fitting.'**" Other examples
discussed in the scattering literature can be found, e.g., in Refs. 7, 14,
and 31. The following two entries in Table I are classical in geostatis-
tics but are seldom used in scattering studies. GRF-6 is the Matérn
model where K, is a modified Bessel function. The parameter y con-
trols the smoothness of the field, which is ¢ — 1 times differentiable,
and GRF-2 is obtained as a particular case for y — oco. By contrast to
GRF-6, field GRF-7 introduces strong correlations through Bessel
function J,. It leads to peaked scattering functions (see Fig. SM-7)
and coincides with GRF-1 in the limit 4 — 1/2.

When it comes to analyzing experimental scattering patterns,
the simple analytical expressions in Table I seldom provide suffi-
cient flexibility for data fitting. Therefore, a convenient approach
consists in linearly combining independent Gaussian fields W;(x),

with spectral densities f ‘(,f,) (q), so as to create a composite field

W(x) = ZUiWi(X), 9
where o; are constants. The spectral density of the resulting field is
fw(@) = Yo £ (a), (10)

and a similar relation holds for g, (r). Because the integral of £, (q)
over the entire reciprocal space is the variance of the field, the
parameter o7 can be thought of as the contribution of W;(x) to the
total variance of the composite field W (x). In that spirit, a possible
approach to data fitting would consist in combining a large number
of monodispersed fields (e.g., GRF-1 in Table I) so as to approximate
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TABLE 1. Examples of static Gaussian random fields (GRFs) with their spectral densities f,y/(q), field correlation functions gy, (r), and characteristic lengths /. The function
w(|x]) is the corresponding elementary wave relevant to a dilution approach (see text, / and y are model parameters). These functions are plotted in Figs. SM-1-SM-8 of the

supplementary material.

GRF No. fw(@ gw(r) Iw w(x)* References
! o Ola - %] it V6l] (2m) - 16
5 1Y erlars L/ I ) 5and 29
P sinh[mql/2] b
3 égq 1+cosh%ﬂql] coshl[r/l] \/El 5 e 18
I 1 4 _—[ql]*/4 4(r\2, 4 (r\4]-(2) |x] 3], -2(5
4 () a(ane e [1-40) + 5(5) "] 3/71 [(T) _Z]e (%)

sin[27r/1]

5 P sinh[x?/u] sinh[rql/ 2 )]/ (qD)
(2nr/1) cosh[ur/1]

4’y cosh[2n? /u]+cosh[mql/u]

LY Ty 1—u (r/D" Ky (r/1)
¥ (ﬁ) T(u)[1+(a)?] 3 2
1) I(ur1) 2qu-3 Ju(r/D)
7 (J) rpl - @y 2T+ 1) Gy
8 Piecewise linear cf. supplementary material

_ I I 5
21 1) Kes () sand 2
H_3
XY 274 Ix] =
21\/[4+1 (l) ]%+% ] 5

cf. supplementary material

*Within unspecified normalizing factor.
"Not available.
“A typo in the formula provided for f,,(q) has been corrected in the present table.

an experimental spectral density as a sum of Dirac peaks. As an
unpractically large number of peaks might be needed to approxi-
mate a continuous function, a more practical approach consists in
replacing the Dirac peaks by broader functions. The piecewise-linear
model (GRF-8 in Table I) corresponds to such an approach, which
was developed in earlier work.” As this approach was used here to
fit the SANS data in Fig. 1(a), it is described in detail in the sup-
plementary material (Sec. SM-III). In particular, the influence of the
number of nodes for the SANS fit shown in Fig. 1(a) is illustrated in
Fig. SM-10.

When generalizing the Gaussian field modeling to time-
dependent structures, it will prove useful to use another construction
of Gaussian fields, which is mathematically equivalent to Eq. (5). In
the so-called dilution random functions,”” a field is created as a
sum of localized elementary waves w(x), randomly positioned in
space, namely,

W(x) = Y Aw(x-x), (11)

where the sum is on all the seeds x; of a Poisson point process with
density 0 and A; is any random amplitude satisfying (A) = 0 and
(AsAy) = (A%)6,s. The latter condition corresponds to uncorrelated
wave amplitudes. In the limit of a large density of the Poisson pro-
cess, many elementary waves overlap at any given point of space
so that the values of the field defined in Eq. (11) become Gaussian
distributed.

In the context of a dilution approach, the correlation function
of the field is calculated as®>**

gw(r) = 6(A%)K(r), (12)
where

K(r) = dex w(x)w(x-r) (13)

is the self-convolution of the elementary wave. In order to
ensure that the variance of the field is equal to one, one has to
impose g;,,(0) = 1, which requires adjusting the amplitudes so that
8{A*)K(0) = 1. Although Egs. (5) and (11) are conceptually differ-
ent constructions, the two approaches are mathematically equiva-
lent. The spectral density of the dilution model is indeed obtained as
2

fw(q) = 6(4%) , (14)

f dV, w(x) exp(iq-x)

which results from evaluating the Fourier transform of Eq. (12).
Among the static Gaussian fields presented in Table I, the shape of
the elementary wave is known for GRF-2, GRF-4, GRF-6, and GRF-
7. Conceptually, however, any field such that v/ fw(q) is integrable
can be thought of as resulting from a superposition of a large number
of randomly positioned elementary waves.

B. Clipping procedure

According to a classical approach, the phases of disordered sys-
tems can be modeled as excursion sets of a Gaussian field W(x),
which is also referred to as clipped Gaussian field models.'*! In the
particular case of emulsions,'” a convenient clipping procedure is
based on two thresholds «a < f3, as sketched in Fig. 2. The oil phase
is modeled as the points of space where f < W(x), the surfactant
film-like phase is modeled as « < W(x) < f3, and the aqueous phase
is modeled as W(x) < a.

Because the values of W(x) are Gaussian distributed, the val-
ues of the thresholds control the volume fractions of the phases. The
volume fraction of the oil ¢, is obtained as

¢o = M [B], (15)

where the function A [x] is the probability for a univariate Gaussian
variable to take values larger than x, which can be calculated as
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FIG. 2. Microemulsion modeling as a clipped Gaussian field, with the underlying
field shown in (a) and the structure in (b). The clipping thresholds are « = —0.234
and 8 = +0.234, resulting in aqueous (white) and oil (gray) phases with volume
fractions ¢, = ¢, = 0.4075 and ¢ = 0.185 for the surfactant (red). The figure is
a 2D cut out of a 3D realization obtained from GRF-2 of Table |, with distances
normalized to /.

A[x] = %(1 ~erf[x/V2]), (16)

where erf is the error function. With the same notation, the volume
fraction of the surfactant phase is

¢s = Arfa] - Ai[B], (17)

and the volume fraction of the remaining aqueous phase is ¢,
=1-¢, - ¢,. Relevant values for the microemulsion of Sec. II are
a=~-0234 and f~+0.234, corresponding to ¢, =0.185 and ¢,
= ¢, = 0.4075, as used in Fig. 2.

The scattering functions are obtained from the covariances of
the various phases of the microemulsion, which are calculated from
the field correlation function g, (r) and the clipping thresholds «
and f. In line with Eq. (3), we consider here the covariances Coo(7),
Css(r), and Caa(r), defined as the probabilities for two randomly
chosen points at distance r from one another to belong to the oil,
surfactant, and aqueous phases, respectively. The covariances are
expressed in terms of the bivariate error function A;[«, B, ¢], defined
as the probability for two correlated Gaussian variables, with corre-
lation g, to take values larger than « and 3, respectively.'® Explicitly,
the expressions are!”**

Coo(r) = A2 [B, B, gw (r)] (18)
for the oil phase,
Css(r) = Mafa, o, gw (r)] + Aa[ B, B.gw ()] = 2 [a, B, gw (r)] (19)
for the surfactant phase, and
Caa(r) =1 -2A1[a] + Az[e, 0, gw (1)] (20)

for the aqueous phase. The values used to calculate the scattering
functions through Eq. (3) are the centered covariance Coo (), Css (),

ARTICLE scitation.org/journalljcp

and Cu,(7), obtained by subtracting the corresponding squared vol-
ume fraction so as to enable their Fourier transformation through
Eq. (4).

In principle, the function Az[a, 8, g] can be calculated as two-
dimensional integral of a bivariate Gaussian distribution. Based on
Dirichlet’s representation of Heaviside’s step function, it can be
calculated in the following simpler way:'*!7:27:8

Aol B, g] = Ar[a] A [f]
1 \/O\asin[g] expl:_(xz —+ /_)’2 — 20([; sin(@)

T on 2 cos?(0)

dé, (21)

which requires numerically evaluating only a one-dimensional inte-
gral. For any given volume fraction of the phases, that is, for given
a and S, Egs. (18)-(20) define non-linear relations between the field
correlation g, and the corresponding covariances. These relations
are illustrated in Fig. 3 for the centered covariances Co, Caq, and
C,, for the values of « and B relevant to the microemulsion data.
Note that the values satisfy a« = -, corresponding to ¢, = ¢, and
Coo(7) = Caa(r).

As visible in Fig. 3, for small field correlations L the cen-
tered covariances Co, and C,; are proportional to gw- In that
region—corresponding to large r or T—the bivariate error function
A, is approximated by

tx2+[52
2

mlopg) = mlanlp)+ oo -3 )o@

which is the first term of a general development in terms of Hermite
polynomials.”' However, in general, A, is a non-linear function.
In particular, the relation between g, and the covariances of any

0.3

0.2}

Q 01¢

OA

aw

FIG. 3. Effect of clipping: non-linear relation between the field correlation g,,
and the centered covariance C = C — ¢? of the aqueous, oil, and surfactant
phases, calculated from Egs. (18)—(20) with clipping constants « ~ —0.234 and
B ~ +0.234. The relations are highly non-linear for g, ~ 1 and linear for asymp-
totically small gy, which limit is relevant for asymptotically large values of r or
7. The dashed lines are the asymptotic approximations for g,, — 1 calculated
through Eq. (23), relevant to vanishingly small r and 7.
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clipped structure is vertical when g,,, approaches 1 (see Fig. 3). The
following asymptotic relation is useful for further purposes:

€  _aB _(p?

2

+ nggle_%ﬁ(l—erf[%]). (23)

Moo .1~ €] = Ai[max{a, B}] -

It is obtained by setting g = 1 — €” in Eq. (21), through a first-order
expansion in e. This equation controls the shape of the covariances
for asymptotically small r and 7 and therefore the asymptotic shape
of the scattering functions for large g and small 7, as we discuss in
detail later. The centered covariances approximated through Eq. (23)
are shown as dashed lines in Fig. 3.

IV. TIME-DEPENDENT CLIPPED GAUSSIAN
FIELD MODELS

We now introduce three qualitatively different dynamic models
to construct time-dependent Gaussian fields, starting from any static
Gaussian fleld. This is achieved by adapting Eq. (5) or (11), by which
the fields are constructed. Although the models are quite general, the
discussion is centered on static field GRF-2 of Table I, which has the
following spectral density:

fw(q) = (2%)3 eXP[—(qi)z] (24)

and the field correlation function
2
gw(r) :exp[—(l) ], (25)

where [ is model parameter that coincides with the characteristic
length Iw. With this specific field, the main results can be expressed
in analytical form. Moreover, the corresponding elementary wave
w(x) is also known analytically (see Table I), which enables one to
construct realizations and visually illustrate all considered dynamic
models.

All results of Sec. I1I remain valid for time-dependent Gaussian
fields. This is notably the case for the clipping relations between the
field correlation and the covariances of the water, oil, and surfac-
tant phases. However, the field correlation function describes here
the statistical correlation between the values of W at two points at
distance r apart, with a time lag 7, namely,

gw(nt) = (W )W(x+r,t+71)). (26)

In this case, the covariances obtained through Egs. (18)-(20) are
Van Hove correlation functions,"” and the intensity obtained sub-
sequently through Eqgs. (3) and (4) is the coherent intermediate
scattering function I(q, 7).

Throughout this section, the qualitative geometrical properties
of the Gaussian fields are illustrated by clipping them at the value
a = 0. This yields two-phase morphologies with volume fractions
¢ = 1/2, different from the emulsion in Fig. 1. All the mathematical
results, however, are quite general and remain valid for any clipping
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procedure. The specific case of the three-phase emulsion, with finite
surfactant volume, is considered again in Sec. V.

A. Dynamic model 1: Independent time and space
fluctuations

In the first approach, a field is created with statistically inde-
pendent space and time fluctuations. This is achieved by starting
from a series of independent static fields W, (x), withn=1,...,N,
and combining them linearly with time-dependent coefficients. The
fields W, can be thought of as independent realizations of Eq. (5)
each with different random numbers but the same spectral density
fw(q). The statistical independence is expressed as

(Wi (X)W (x+ 1)) = gw(r)8mn, (27)

where 8us = 1 for m = nand 0 otherwise. Based on the set of W, (x),
the time-dependent field is built as

W(x,t) = %i Wau(x) cos(wnt — @u), (28)
n=1

where the phases ¢ are random and uniform over [0,27), and the
frequencies w, are drawn from a temporal spectral density f’(w)dw.
With this first dynamic model, the space and time field correlation
function in Eq. (26) is found to be

gw(rnt) =gw(r)g (1) (29)

in the limit of large N, with

g(1) = fow cos[wr]f'(w)dw. (30)

In geostatistics, models satisfying Eq. (29) are referred to as being
separable.”’

A physical interpretation of separable models is obtained by
noting that they can be constructed in mathematically equivalent
way through a dilution approach, as in Eq. (11). Indeed, the field
constructed as

W(xt) = V23 Aaw(x - x;) cos(wst — ¢s) (31)

with ¢ uniformly distributed in [0, 277) and w, distributed according
to temporal spectral density f'(w), has the same correlation func-
tion as in Eq. (29). Therefore, dynamic model 1 can be interpreted
as resulting from incoherently fluctuating elementary waves.

For the purpose of data modeling, a natural choice for the tem-
poral correlation function is the exponential g'(7) = exp[-7/7¢],
where the correlation time 7, is a model parameter. This choice
corresponds to the following spectral density:

Flo)=t 2% (32)

71+ (wre)?

A realization of the clipped Gaussian field obtained from this
specific time-correlation function and static field GRF-2 is shown in
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Its temporal spectral density is

. 27, cosh[nwt./2]

W)= — 33
f(w) 1 + cosh[nwT,] (33)
A realization of the clipped Gaussian field obtained with this expres-
sion is shown in Fig. 4(b). The corresponding correlation func-
tion g, (#,7), covariance (for a = 0), and intermediate scattering
function are plotted in Figs. 5(a2)-5(c2).

B. Dynamic model 2: Dispersion relation

The second dynamic model introduces correlations between
space and time fluctuations and belongs to the class of non-separable
models.”*** This is achieved through a dispersion relation that deter-
FIG. 4. Two-dimensional (x,t) cuts through four-dimensional (X, y, z,t) realiza- ministically assigns a specific temporal frequency w to any spa-

tions of dynamic model 1, with static field GRF-2 from Table | and exponential (a) tial frequency g of the Gaussian field and leads to the following
and hyperbolic-secant (b) temporal correlation functions. The threshold assumed oo
generalization of Eq. (5):

in the figure is a = 0, corresponding to ¢ = 0.5 for the phases shown in white and

gray.
2y
W(x,t) = NZ sin[q,, - x + w(]q,)t - ¢u], (34)
n=1
Fig. 4(a). The corresponding correlation function gy, (r,7) is plot-  where w(|q|) is the dispersion relation, which we assume to be
ted in Fig. 5, together with the covariance, assuming a single clip-  isotropic. Based on the statistical independence of the various com-
ping threshold & = 0, and the corresponding intermediate scattering ponents of the field in Eq. (34), the field correlation function is
function in the form of I(g, 7) /I(q). calculated as
The type of dynamics obtained from the exponential time-
correlation function in Fig. 4(a) is extremely rugged. Smoother _ / *° sin(qr) , >
dynamics is obtained by modeling the temporal correlation function gw () = 0 fw(q) cos[w(q)r] qr dnq dq (35)

as a hyperbolic-secant g’ () = 1/ cosh[7/7.], which behaves like an
exponential for asymptotically large times but differs for short times. in the limit of asymptotically large N.

1(q,7)/1(q)

1(q,7)/1(q)

1 0.2 0.1

5
T/Te /Ly 06 02 T/Te qlyy 10 2 /7,

0.4
r/ly

FIG. 5. Correlation function gy, (r, 7) for static field GRF-2 and independent space and time fluctuations, with exponential (a1) and hyperbolic-secant (a2) time-correlation
functions. The corresponding covariance (clipping threshold « = 0) and intermediate scattering function are shown in (b1) and (b2) and (c1) and (c2). The two solid lines in
(b1) and (b2) and (c1) and (c2) highlight the values for 7 = 0 and for small yet finite .
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In principle, any suitable function can be used to model a
dispersion relation. We consider here two simple analytical forms
w=cq and w = Dq*, where ¢ and D are constants with dimen-
sions of velocity and diffusion coefficient, respectively. Realizations
obtained with static field GRF-2 and these two dispersion relations
are given in Figs. 6(a) and 6(b). In the case of the linear disper-
sion relation, the structures propagate at constant velocity ¢, which
appears as slanted features with slopes 1 on the scales of the figure.
In the case of quadratic dispersion, the structures propagate with
size-dependent velocity, which leads to more complicated temporal
evolution.

In the particular case of static field GRF-2, analytical expres-
sions are obtained for the field correlation function through Eq. (35).
For the linear dispersion relation, one finds

gw(r,1) = exp[_rZJr(CT)z] N {cosh[zra]

By By

ct\? . | 2rer 2ret
(i) 5]/ ] e

and for the quadratic dispersion, the relation is

(r/lw)?
eXP[—ﬁ] N )
gw(n 1) = 1+[4D7/B, ] COS[ (r/lw)“4Dt/ly,

(1+ [4DT/1§V]2)3/ S 1+ [aDe/B, T

3 -1 4Dt

Detailed derivations of these equations are given in the supplemen-
tary material (Sec. SM-IV). The correlation functions and corre-
sponding intermediate scattering functions are plotted in Fig. 7.

An interesting characteristic of the time-dependent structure in
Fig. 6(a) is that it displays temporal order despite being spatially dis-
ordered. The absence of any feature in g, (r,0) testifies to spatial
disorder [see Fig. 7(al) and Fig. SM-3]. By contrast, the correlation

z/lw

z/lw

FIG. 6. Two-dimensional (x, t) cuts through four-dimensional (x, y, z, t) realiza-
tions of model 2 of the time-dependent Gaussian field, with GRF-2 from Table |,
and linear (a) and quadratic (b) dispersion relations. The threshold assumed in the
figure is o = 0, corresponding to ¢ = 0.5 for the phases shown in white and gray.
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gw(r,T)

gw(r,T)

1

r /by 3 4 Dr/13, aly 6 2 Dr/13,

FIG. 7. Correlation function g,,(r,7) for GRF-2 from Table | with linear (a1)
and quadratic (a2) dispersion relations, together with corresponding intermediate
scattering functions [(b1) and (b2)] for clipping threshold « = 0.

function g, (0, 7) displays a sharp minimum at 7 = \/m x lw/c.
This corresponds to a situation where a fixed point of space is visited
alternatively by one phase and the other with quasi-periodicity.

The temporal order is not obvious in the correlation function
of the quadratic dispersion [Fig. 7(a2)], but the intermediate scatter-
ing function I(g, 7) exhibits marked oscillations for both dispersion
relations [Figs. 7(b1) and 7(b2)]. This can be understood by noting
that for asymptotically large values of 7, the covariance is propor-
tional to g, (r,7) (see the discussion of Fig. 3) so that I(g,) is
approximately the Fourier transform of g, (7, 7). It therefore results
from the Fourier inversion of Eq. (35) that I(g, 7) is proportional to
fw(q) cos[w(g)] for large values of 7. It is the cosine in this expres-
sion that is responsible for the observed oscillations in Figs. 7(b1)
and 7(b2). For the particular representation as I(g,7)/I(q), the
oscillations are further amplified by the small value of I(q) for
large q.

C. Dynamic model 3: Moving waves

Experimental scattering functions seldom display the type of
marked oscillations obtained with dynamic model 2 and displayed
in Fig. 7. In dynamic model 3, the temporal correlations and cor-
responding oscillations are naturally damped through a dilution
approach, i.e., by using Eq. (11) instead of Eq. (5) to describe the
Gaussian field. Explicitly, the Gaussian field is made time-dependent
by allowing the elementary waves to propagate,

W(xt) = > Aw(x-x—j (1)), (38)

where x; is the initial position of wave s and j (t) is the vectorial
distance it has traveled at time t. We consider two qualitatively dif-
ferent cases: the ballistic or diffusive motions of waves with velocity
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¢ or diffusion coefficient D. For static field GRF-2, the shape of the
elementary wave w(x) is known mathematically (see Table I), which
enables one to construct realizations as shown in Figs. 8(a) and 8(b).
The diffusive model displays the same type of rugged dynamics as in
Fig. 4(a), which we analyze in detail in Sec. V.

The field correlation function corresponding to Eq. (38) is cal-
culated from the time-dependent distributions f,(j)dV; of the wave
position j as follows:

gw(r) =0(a°) [ K(r=)f:(5) 4V, (39)

which generalizes Eq. (12) to time-dependent dilution processes. If
the elementary waves are compact in real space, then K(r) has a
range comparable to the characteristic length Iy of the field. It there-
fore results from Eq. (39) that all correlations disappear as soon as
the elementary waves have traveled a distance comparable to lw,
which happens in a time lw/c or I3, /D for the ballistic or diffusive
case, respectively.

The case of ballistic propagation corresponds to density
distribution

8@ —c1)
T (40)

f=(4) =

where j = [j|, 8(-) is Dirac’s function, and the denominator accounts
for the normalization of the probabilities. With such distribution,
Eq. (39) reduces to an integration on the unit sphere and leads to

gw(r,7)=06(A zf \/r2+ (c1)? = 2rey ) dp. (41)

In the case of static field GRE-2, this can be calculated explicitly as

r— cr)Z] 1 — exp[—4rcr/ly ] (42)

gw(r,1) = exp[—( I wreiE,

FIG. 8. Two-dimensional (x,t) cuts through four-dimensional (X, y, z, t) realiza-
tions of dynamic model 3 with static field GRF-2 from Table | and (a) ballistic and
(b) diffusive propagation of elementary waves. The threshold assumed in the figure
is a = 0, corresponding to ¢ = 0.5 for the phases shown in white and gray.
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which is plotted in Fig. 9(al). The corresponding intermediate
scattering function (assuming « = 0) is plotted in Fig. 9(b1).

In the diffusive case, the probability distribution of j is given by
the classical expression for the position of a random walker,”*”

2

£1G) = (4nD1)" exp[ i’,'m] 13)

For the case of static field GRF-2, Eq. (39) then leads to the following
field correlation function:

4pr\ r2
1) =1+ 55— - 44
gw(rT) ( "B, ) eXp[ l@v+4m] 49

This function is plotted in Fig. 9(a2), with the corresponding inter-
mediate scattering function (assuming « = 0) in Fig. 9(b2).

The asymptotic behavior of the intermediate scattering func-
tion I(g,7) for large 7 can be understood by expressing the field
correlation function in Eq. (39) in terms of the spectral density as
follows:

o) = [T rw@r@ P inag, s

where F;(q) is the Fourier transform of f_(j). This expression
results directly from Eq. (39) by equating 8(A*)K(r) to the Fourier
transform of f,,(q). For the same reason as for model 2, the inter-
mediate scattering function is proportional to the Fourier trans-
form of gy, (r,7) in the limit of asymptotically large 7. In the
case of model 3, this implies I(q,7) =~ f,(q)F:(q). In the case of
the ballistic motion described by Eq. (40), the relevant value of

al
1
B S
= ©
0 =
S
0
0 1
2
3 et /ly
a2 b2
1 1
T =
= ©
0 30
~
0
° 1 - ° 2 -
r /by 3 Dr/13, aly Dr/13,

FIG. 9. Correlation function gy, (r, ) of model 3 for Gaussian fields GRF-2 with
(a1) ballistic and (a2) diffusive motion of elementary waves, together with corre-
sponding intermediate scattering functions [(b1) and (b2)] for clipping threshold
a=0.
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F:(q) is

sin[gct]

) (46)
qct

F:(q) =

which explains the mild oscillations in Fig. 9(b1). In the case of the
diffusive motion described by Eq. (43), the relevant function is

F:(q) = exp[—q2 D‘r], (47)

which explains why no oscillations are observed at all in Fig. 9(b2).
Finally, note that the expression of the field correlation function in
Eq. (45) relies on the spectral density and makes no explicit refer-
ence to the elementary wave used to build the model. Therefore, the
usability of dynamic model 3 is not limited to static Gaussian fields
for which the form of the elementary wave is known explicitly.

V. DISCUSSION
A. Temporal crossing rate

An interesting characteristic of the Neutron Spin-Echo (NSE)
datain Figs. 1(c1) and 1(c2) is the very steep 7-dependence for small
7 and large g. Among the three dynamic models discussed in Sec. I'V,
this type of behavior was observed for model 1 with the exponential
time-correlation function [Fig. 5(c1)] and for model 3 with diffusive
motion of elementary waves [Fig. 9(b2)]. In both cases, the realiza-
tions testify to extremely rugged dynamics as illustrated in Figs. 4(a)
and 8(b).

A useful mathematical concept to describe the two types of
dynamics in both Figs. 4 and 8 is the temporal crossing rate #;, which
characterizes how often a fixed point in space is crossed by moving
interfaces. As discussed shortly, this concept is the temporal equiv-
alent of the spatial notion of the specific surface area. The surface
area ay is defined as the total area of an interface per unit volume of
the system. For an isotropic system, it is mathematically related to
the notion of the average chord length, which characterizes how fre-
quently one crosses the interface when traveling along any straight
line crossing the system.’® The significance of the surface area for
scattering was first acknowledged by Debye, who related ay to the
small-r behavior of the covariance as™

c(r,o):¢—%"r+~-, (48)

which converts in reciprocal space to the well-known Porod’s
lawllb—ll

1(g,0) = =~ (49)

In the particular case of clipped Gaussian field structures, the surface
area of an isosurface, say, at W(x) = a, is calculated as'”*/

2\/_ —-a’/2
ay = ——e€ ,

= (50)
ﬂlw

where Iy is the characteristic length of the field defined in Eq. (8).
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The crossing rate n; is related to the covariance via
ny
C(O’T):¢_ET+"" (51)

which illustrates further the similarity between n; and the surface
area ay in Eq. (48). The factor 1/2 differs from the factor 1/4
in Eq. (48) because the temporal process considered here is one-
dimensional.* From Eq. (51), the crossing rate can be calculated as
the limit of ~2(9C/97) for vanishingly small r and 7. In the case of
a clipped Gaussian field model, this limit corresponds to the values
of the field correlation function g, (, 7) asymptotically close to 1.
The derivative can then be calculated using the asymptotic result in
Eq. (23). The following expression is then obtained for the crossing
rate:

2 \/1-— N
ny = ﬁeﬂx 2 lirrgigw(o T), (52)
T — T

which provides a physical interpretation to the small-7 behavior
of g,,(0,7). The condition for having finite #, is that the field
correlation function should be quadratic at the origin,

aw(0,7) = 1= (/rw)* +---, (53)

which defines a natural characteristic time 7yw. Note that the two
dynamic models of Sec. IV displaying rugged dynamics both have
correlation functions that are linear at the origin. In the case of
model 1 with the exponential correlation function, Eq. (29) leads to

ew(0,7)=1-7/tc+---, (54)

and in the case of model 3 with diffusive wave motion, Eq. (44) leads
to

6D
gw(O,T)zl—lz—T+---. (55)
w

In both cases, Tw is not defined and Eq. (52) predicts the infinite
crossing rate. The effect of linear vs quadratic correlation at short
times is illustrated further in Fig. 10.

Whether the crossing rate n; is finite or infinite controls the
shape of the intermediate scattering function I(g, 7) for asymptot-
ically large g and small 7 (see Figs. 5 and 9). The analysis builds
on the following two mathematical facts. (i) First, the non-linearity
of the clipping function at g, = 1 is of the type C~1-+/1—-gw
[see Fig. 3 and Eq. (23)]. In particular, this converts a quadratic field
correlation g, (r,7) ~ 1 — r* into a linear covariance C(r,7) ~ 1 - r.
This also converts a linear field correlation g, (r,7) =~ 1 -7 into
a singular covariance C(r,7) ~ 1 — \/7. (ii) Second, the asymptotic
behavior of I(g, 7) for large g is controlled by the small-r behavior of
C(r, 7). This results from a generalization of the Riemann-Lebesgue
lemma by Lighthill’”** and is shortly discussed in the supplemen-
tary material (Sec. SM-VI). In particular, a covariance that is linear
at the origin C(r,0) = 1—r leads to a 1/g* scattering in line with
Porod’s law in Eq. (49). By contrast, a covariance whose derivatives
all vanish at = 0 leads to a scattering that decreases faster than any
power law.
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3 HI (D W) .

aw(0,7)

T/7e

FIG. 10. Field correlation functions at a fixed point in space g,,(0, 7) for dynamic
model 1 with exponential (blue) and hyperbolic-secant (black) temporal correlation
functions. The insets are realizations of the time-dependent Gaussian fields at a
fixed point in space, together with the clipped structure with & = 0 for the exponen-
tial (@) and hyperbolic-secant (b) models. The dashed line highlights the quadratic
shape of the hyperbolic-secant model at the origin.

Consider now the case where Tw exists, i.e., where g, (7, 7) is
quadratic in 7 at the origin and C(r, 7) is linear in 7 [e.g., Fig. 5(b2)].
In that case, Porod’s law holds not only for I(g) but also for I(g, 1)
for small 7s because C(r,7) is a smooth function of 7. As a conse-
quence, I(g,7)/I(q) approaches the value 1 horizontally for 7 — 0
[Fig. 5(c2)]. By contrast, if 7w is not defined, the covariance C(r,7)
varies like /7, which has infinite slope for 7 — 0. Accordingly,
C(r,7) passes from being linear in r to having vanishing derivative
over the infinitesimally short interval of 7 [Fig. 5(b1)]. The interme-
diate scattering function I(g, 7) passes discontinuously from Porod’s
law for 7 = 0 to decreasing faster than g~* for arbitrarily small 7 > 0.
This explains the very steep intermediate scattering function I(q, 1)
for large q and small 7 in Fig. 5(c1). The same explanation holds for
Fig. 9(b2).

In the case of model 1, the existence Tw and the finiteness of
n; can be ascertained by direct examination of giy (7). In the case of
model 2, one has to examine both the dispersion relation and the
spectral density. Assuming a dispersion relation of the type

w(q) = anq", (56)

where a, and n are constants, a truncated expansion of the cosine
factor in Eq. (35) leads to

1 a [ 0
= = 7[} fw(q)q"4nq’dq. (57)
w

In the particular case of a linear dispersion relation, with a; =,
the characteristic time is proportional to the characteristic length

tw = lw/(c\/3). However, for exponents 7 larger than one, the con-
ditions are more stringent for 7w than for lw. The condition for
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non-vanishing 7w is that the spectral density f,,(¢q) should decrease
faster than g~ with v = 2n + 3 (see also Sec. SM-VII in the supple-
mentary material). Finally, in the case of model 3, it results from
Eq. (45) that the ballistic case always leads to finite n;, provided lw
is finite. Replacing Eq. (46) by a truncated expansion for small 7, the
following expression is indeed obtained:

C‘I.’2

gw(0>f)ﬁ1—(f) +eoe (58)

w

which shows that 7w = lw/c. By contrast, in the diffusive case,
gW(O, 7) is linear in 7 and n; is always infinite, as already shown in
Eq. (55). The latter equation holds for all spectral densities, and it is
not limited to static field GRF-2.

B. NSE data analysis

The developed approach offers the possibility of decompos-
ing a given static structure into distinct contributions and building
composite time-dependent models, whereby each structural contri-
bution is animated according to different dynamic models. In the
particular case of the microemulsion, the static SANS data hint at
two types of structures, as illustrated in Fig. 11. A distinctive fea-
ture of the SANS is the presence of a sharp scattering peak in the
bulk contrast data around 0.03 A™', corresponding to strongly cor-
related structures. That peak alone, however, does not describe the
entire SANS as it is superimposed with a more diffuse and featureless
background scattering that extends over the entire g range. We now
endeavor to model these two contributions with suitable Gaussian
fields and use these SANS-born models to explore the NSE data.

A natural choice for modeling the background-like contribu-
tion in the SANS is the static field GRF-2, which was used for

. 3000
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FIG. 11. (a) Fitting of the microemulsion SANS patterns of Fig. 1 as a sum of two
static GRF contributions, with bulk and film contrasts in red and gray, respectively.
The dots are the data, and solid lines are the fits. The two contributions to the
spectral density and the correlation functions are shown in (b) and (c), with back-
ground contribution (GRF-2, dotted), correlated contribution (GRF-4, dashed), and
their sum shown as a solid line.
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illustrative purposes throughout Sec. V. As the spectral density of
GREF-2 [see Eq. (24)] displays no peak, it is not suitable to model the
correlated part of the structure. For the latter contribution, we intro-
duce a new static field, the elementary wave of which is built as the
Laplacian of GRF-2, namely,

o[ e 2]

The static properties of this field are given in Table I under the name
GRF-4. By construction, the elementary wave in Eq. (59) satisfies

f w(x)dV; = 0. (60)

This is equivalent to f,,(0) = 0 by virtue of Eq. (14), which leads to
the desired scattering peak in the SAS patterns (see also Fig. SM-4).
Interestingly, in the context of moving-wave dynamic models
(model 3) when a given volume is crossed by any wave satisfying
Eq. (60), the local average value of the Gaussian field W(x) remains
unchanged in a neighborhood of size larger than ly. Therefore, the
propagation of the elementary wave in Eq. (59) preserves locally the
volumes of the phases. We therefore refer to GRF-4 as a deformation
mode. The volume-preservation property can also be understood by
noting that the low-g limit of the scattered intensity is proportional
to the compressibility of the phases** so that a spectral density that
vanishes for g — 0 corresponds to incompressible phases. By con-
trast, GRF-2 leads to local modifications of the the volumes, and we
refer to it as a breathing mode. The spectral densities of these two
modes are illustrated in Fig. 11(b).

To analyze the microemulsion SANS data, the breathing and
deformation modes were combined into a single Gaussian field, fol-
lowing Eq. (9). This leads to a three-parameter static field model,
with the characteristic lengths of each mode and their relative con-
tribution to the field variance. The clipping thresholds « = —0.234
and 8 = +0.234 are imposed by the volume fractions. The least-
square fit of both bulk- and film-contrast data is illustrated in
Fig. 11. The breathing mode contributes 70% of the variance (o}
~0.7) with lengths I; ~ 98 A and I, ~ 65 A for the deformation
and breathing modes. These numerical values of I; and I, coinci-
dentally correspond to the same characteristic lengths Iy ~ 65 A
(see Table I).

In order to analyze the NSE data, a dynamic model has to be
assumed for each mode. As the notion of breathing and deforma-
tion is inspired by an elementary-wave interpretation, we restrict
the analysis to model 1 (fluctuating waves) and model 3 (ballisti-
cally or diffusively propagating waves). Moreover, as the NSE data
exhibit steep slope for large q and small 7 [Figs. 1(cl) and 1(c2)],
we consider only the exponential correlation function for model
1 with infinite crossing rate n;. In the following, we explore sys-
tematically all combinations of the three types of dynamics for the
two modes, which leads to nine composite time-dependent Gaussian
fields. The least-square fits of the NSE data are illustrated in Fig. 12,
and the values of the corresponding parameters and y” are reported
in Table I1. The fitting required the correlation function g, (,7) to
be known for the deformation mode (GRF-4) for both ballistic and
diffusive wave propagation. All details are provided in Sec. SM-V of
the supplementary material.
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Globally, none of the composite models in Fig. 12 is able to
quantitatively account for both the bulk- and film-contrast NSE data.
The model that fares worst is the one that assumes ballistic wave
propagation for both breathing and deformation modes. This model
has finite crossing rate n; and is unable to capture the steep experi-
mental intermediate scattering function. Based on the y* values in
Table 11, the data are best described when both modes have dif-
fusive dynamics. More generally, it is interesting to note that the
calculated intermediate scattering functions in Fig. 12 are generally
smaller than the data, particularly for the film-contrast scattering, so
that the breathing and deformation-mode approach overestimates
the dynamics. This is also manifest in the values of Table II, which
often converge toward the lower limits allowed on the parameters.
This means that one of the two modes is practically static and does
not contribute to the dynamics.

As an alternative to the composite model based on breathing
and deformation modes, the stochastic models offer the possibility
of a more general approach based on a dispersion relation (dynamic
model 2). This enables one to better match experimental data by
tuning the dynamics in a scale-dependent way through the value
of q. Moreover, the dispersion-relation approach does not require
one to explicitly decompose the SANS into substructures so that the
same piecewise-linear spectral density (GRF-8) as in Fig. 1(a) and
Fig. SM-10 can be used to describe the underlying static Gaussian
field.

Although any dispersion relation can, in principle, be chosen to
model the NSE data, it is desirable that it should lead to an infinite
crossing rate n; so as to capture the steep intermediate scattering
function. As discussed in Sec. SM-III of the supplementary mate-
rial, the spectral density of the piecewise-linear model decreases
asymptotically as g® so that any dispersion relation with order
n > 3/2 would lead to infinite 7;. In practice, the following dispersion
relation is found to describe fairly the NSE data,

w=a(q-q.)’Hlq-q.], (61)

where H() is Heaviside’s step function, g, is a cutoff frequency, and
the parameter a sets the value of w. The least-square fit is illus-
trated in Fig. 13 and in Fig. SM-12 as 2D plots. The values of the
fitted parameters are a ~ 2050 + 60 A*/ns and g, ~ 0.047 + 0.0002
A", resulting in x* = 6.3, which is a significant improvement com-
pared to the values in Table II. The reported uncertainties on a
and g, were obtained from a Monte Carlo estimation, with a +2¢
normal-distributed error on each NSE data point. The small errors
on the parameters results from the fact that all the NSE data—over
the entire g and 7 ranges and for the two contrasts—are fitted jointly
with only two adjustable parameters, which makes it quite robust.
This also offers the prospect of reducing the number of experimental
data points needed to reliably adjust a model (see Fig. SM-15).

As an alternative to Eq. (61), the NSE data were also fitted with
a dispersion relation modeled as a sum of power laws (from n =1
to n = 4) with adjustable factors. Such a fit converges to a situation
where factors with alternating signs contribute to keeping w close
to zero for small g, leading to an overall shape similar to the cutoff
frequency used in Eq. (61) (see Fig. SM-13).

The q° dependence assumed in Eq. (61) appears in a variety
of dynamic structure factors involving hydrodynamic interactions,
although the specifics of the relaxation curve are system-dependent.
Exponent 3 notably appears in the Zimm model of polymers in
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FIG. 12. Fitting of the microemulsion NSE data with the composite breathing-and-deformation model (GRF-2 and GRF-4), with the dynamics of the modes modeled either as
(i) fluctuations, (ii) ballistic waves, or (iii) diffusive waves. From top to bottom: the breathing mode is assigned fluctuating (a), ballistic (b), or diffusive dynamics (c). From left
to right: the deformation mode is assigned fluctuating (1), ballistic (2), or diffusive dynamics (3). In each case, the dots are the data with bulk (gray) and film (red) contrasts,

and the surface is the model. The corresponding parameters are in Table |1

solvents to describe the thermally driven fluctuations of a polymer
chain.*>*° It also appears in the Zilman-Granek analysis of mem-
brane fluctuations with bending rigidity.*’ In the present context,
this can be understood from the following general scaling argument.

TABLE II. Parameters of the composite model, whereby each mode (breathing or
deformation, both with /yy ~ 65 A) is assigned either a fluctuating, ballistic, or diffusive
dynamics. The values were obtained from the least-square fits in Fig. 12, and the XZ
values are also reported.

Deformation mode

Fluct. (74) Ball. (¢y) Diff. (Dy)
s 75, =1000 ns’ 7, = 130 ns 7, = 1000 ns"
§ 7, =519 ns ¢;=0.088A/ns D,=13A%ns
gy E (* =10) (o =11) (" =82)

]

ED 3 =0001A/ns" ¢,=082A/ms ¢, =0.001 A/ns’

::!5 = T1q=429ns ¢;=0.003A/ns Dy =1.7A%ns

5 & (" =9.6) (o = 14) (" =74)

$—

Fa 2 Dy=40 A*ns  D,=86A%ns D, =0.001A%ns"
= 74=1000ns" ¢;=0081A/ns D,=1.7A%ns
fam
A (=84 (x* =7.6) (* =7.4)

*The fit has converged to the upper or lower bound allowed for this parameter.

The very observation of infinite n; hints at thermal random motion.
By itself, this would lead to a quadratic dispersion relation w = Dg?,
where the diffusion coefficient D is related to the characteristic size
L by the Stokes-Einstein relation D ~ kgT/(nL), where kpT is the
thermal energy and # is the viscosity of the medium. In the case of
microemulsion deforming over a variety of length scales, inversely
related to the scattering vector L ~ g™, this suggests the following

(g, 7)/1(q)

FIG. 13. Least-square fit of the NSE data from Fig. 1 with a dispersion relation
(dynamic model 2) and a static field with piecewise-linear spectral density [GRF-8,
same as Fig. 1(a)] for both bulk contrast (a) and film contrast (b). The dispersion
relation is Eq. (61) with parameters a ~ 2053 A%/ns and q, ~ 0.047 A", resulting
in x? = 6.3. The surfaces are the model and the dots are the data, with error bar
+20.
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cubic dispersion relation:

kBT3
w~—9q.

n

(62)

Using the value 1~ 107 Pa s for the effective viscosity of the
water/decane microemulsion, as reported in Ref. 22, the factor in this
scaling law takes the value 4000 A3/ns, which is of the same order of
magnitude as the value inferred from the NSE data fitting.

The time-dependent structure of the microemulsion is illus-
trated in Fig. 14 with a particular realization of the dispersion-
relation model over a time interval of 50 ns. One notes, in par-
ticular, the stability in time of large-scale structures, larger than
~2m/q, ~ 130 A, where q_ is the cutoff frequency from Eq. (61). The
average position of the oil and water phases does not change over
the timescale of the figure. However, the interfaces deform in a ran-
dom and very rugged way at a smaller scale, as typically expected
from a system with infinite crossing rate n;. This picture matches
the physical intuition as the redistribution of oil and water over long
distances occurs through slow hydrodynamic flow, while no such
obstacle exists for the local fluctuations. This scale-dependence is
captured by the Stokes-Einstein relation and is responsible for the
observed ¢° dynamics. On the other hand, the physical origin of
the cutoff size g, remains unclear, although its phenomenology is

10 ns 20 ns
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reminiscent of de-Gennes narrowing, whereby relaxation times are
often observed to scale with the scattering structure factors.**

In order to better understand the realizations of the fitted
model, the structure was further decomposed into its static and time-
dependent components. The realization in Fig. 14(b) was obtained
by setting to zero all components of the spectral density f,,(q) with
q > q,> which results in a much smoother interface. This is manifest
in the characteristic lengths of the field [Eq. (8)], which pass from
Iy =~ 52 to Iy ~ 73 A. Based on Eq. (50), this corresponds to surface
areas ay ~ 170 and ay ~ 120 m?/cm°, respectively. The thermal fluc-
tuations of the interface therefore contribute to as much as 30% of
the area of the interfaces. Due to the symmetry of the model (with
clipping constants « = —f3), the surfactant/oil and surfactant/water
interfaces have identical areas. Another interesting aspect of the fluc-
tuations is their amplitude, which can be estimated by evaluating
first the average density, say, of oil over the entire duration of a sim-
ulation. This is illustrated in Fig. 14(c), where the smooth transition
between the white and black areas corresponds to all the successive
positions of the interface over time. The extent of the transition in
the direction locally orthogonal to the interface is given in Fig. 14(d).
During 80% of the time, the interface fluctuates within a 60 A-thick
layer that extends on both sides of the average position. It is interest-
ing to compare that value to the size of the oil and water phases, esti-
mated as an average chord length’® as 4¢/ay ~ 130 A for the average

30 ns 40 ns

FIG. 14. (a) Time-dependent realizations of the model of Fig. 13 over 50 ns, with oil in gray, surfactant in red, and water in white; (b) realization from the static components
of the field only, corresponding to the spectral density limited to g < q,; (c) average oil density calculated over the duration of the simulation; and (d) average oil density

profile as a function of distance to the interface of the static components (d is positive into the oil). The blue area highlights the 80% confidence interval, with width ~ 60 A.

The four curves in d were obtained from independent realizations.
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structure in Fig. 14(b). In other words, the interface fluctuates over
distances as large as half the size of the phases.

The dispersion-relation analysis hints at reasons why the
breathing and deformation-mode analysis was unable to account for
the NSE data of the emulsion. The dispersion relation points indeed
at two dynamic regimes, but they are separated by a cutoff frequency,
which is much sharper a transition than between GRF-2 and GRF-4.
It has also to be noted that the very concept of independent modes
contributing additively to the dynamics is strictly justified only as
a linear approximation. Given the observed large amplitude of the
interface fluctuations, non-linear effects could be expected, which
would rule out any possibility of linear-mode decomposition.

VI. CONCLUSION

Clipped Gaussian field models have been extensively used to
analyze the elastic small-angle scattering data of disordered sys-
tems. When applied to dynamical systems, such a classical approach
provides static snapshots of a structure. In this paper, the mod-
els are generalized to make them time-dependent, which enables
one to analyze consistently both the instantaneous spatial structures
and their dynamics within a single statistical description. General
expressions are derived for all the space- and time-correlation func-
tions relevant to coherent inelastic neutron scattering for multiphase
systems and arbitrary scattering contrasts between the phases.

With the proposed approach, for any given static structure
inferred, e.g., from small-angle scattering, a variety of distinctly
different dynamics can be modeled. In a first family of models,
the Gaussian field underlying the structure is decomposed into a
large number of localized elementary waves. Qualitatively differ-
ent dynamics are obtained by letting the waves randomly fluctu-
ate or propagate ballistically or diffusively through the system. In
another family of models, the spectral components of the Gaussian
field are assigned any desired dynamics through a suitable disper-
sion relation. The various types of dynamics lead to qualitatively
different intermediate scattering functions, which enables one to
discriminate them through neutron scattering. Moreover, all these
approaches can be combined to yield models with composite and
possibly realistic dynamics.

A central characteristic of the dynamic models, which controls
the shape of the intermediate scattering functions, is their temporal
crossing rate. This is defined by considering a fixed point in space
and evaluating how often it is passed through by a moving interface
of the time-dependent structure. Systems undergoing Brownian-like
thermal fluctuations have infinite crossing rate, which converts to
infinitely steep intermediate scattering functions for asymptotically
large g and small 7.

The methods of this paper were illustrated with the analysis
of neutron small-angle scattering and spin-echo data measured on
oil/water microemulsions. The methodology consisted in analyz-
ing first the SANS data in order to determine the spectral density
of the Gaussian field underlying the static structure, corresponding
to snapshots of the time-dependent structure. As a second step, the
NSE data were analyzed by complementing the so-determined static
spectral density with few dynamic parameters. This enabled us to
analyze jointly the entire SANS and NSE data, in both film and bulk
contrasts and over the entire range of g and 7, with a single coher-
ent model. The small number of adjusted parameter contributes to
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the robustness of the NSE analysis and offers the prospect of reduc-
ing the number of experimental points required to reliably adjust a
model.

From a physical perspective, the SANS and NSE data of the
emulsion point to a static large-scale structure of the oil and water
domains, with thermal fluctuations of the interfaces. The interface
fluctuations take place over distances as large as 60 A, corresponding
to half the domain size, and contribute to 30% of the total interface
area. In future work, the stochastic approach will be explored further
to analyze the wavelike dynamics observed by neutron spin-echo in
lipid membranes.*’

SUPPLEMENTARY MATERIAL

See the supplementary material for the mathematical derivation
of some equations, for numerical data-analysis procedures, as well as
for additional figures.

DATA AVAILABILITY

All SANS and NSE data discussed in this paper can be down-
loaded from the authors’ institutional repository at https://doi.org/
10.26165/JUELICH-DATA/DJ3LIN.
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