000894028 001__ 894028
000894028 005__ 20240712112829.0
000894028 0247_ $$2doi$$a10.1002/cssc.202002904
000894028 0247_ $$2ISSN$$a1864-5631
000894028 0247_ $$2ISSN$$a1864-564X
000894028 0247_ $$2Handle$$a2128/28180
000894028 0247_ $$2altmetric$$aaltmetric:104858248
000894028 0247_ $$2pmid$$a33901333
000894028 0247_ $$2WOS$$aWOS:000648034800001
000894028 037__ $$aFZJ-2021-02994
000894028 082__ $$a540
000894028 1001_ $$0P:(DE-HGF)0$$aMebrathu, C.$$b0$$eFirst author
000894028 245__ $$aIntegrated Co-electrolysis and Syngas Methanation for the Direct Production of Synthetic Natural Gas from CO2 and H2O
000894028 260__ $$aWeinheim$$bWiley-VCH$$c2021
000894028 3367_ $$2DRIVER$$aarticle
000894028 3367_ $$2DataCite$$aOutput Types/Journal article
000894028 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1670389775_13917
000894028 3367_ $$2BibTeX$$aARTICLE
000894028 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894028 3367_ $$00$$2EndNote$$aJournal Article
000894028 520__ $$aThe concept of an integrated power-to-gas (P2G) process was demonstrated for renewable energy storage by converting renewable electrical energy to synthetic fuels. Such a dynamically integrated process enables direct production of synthetic natural gas (SNG) from CO2 and H2O. The produced SNG can be stored or directly injected into the existing natural gas network. To study process integration, operating parameters of the high-temperature solid oxide electrolysis cell (SOEC) producing syngas (H2+CO) mixtures through co-electrolysis and a fixed bed reactor for syngas methanation of such gas mixtures were first optimized individually. Reactor design, operating conditions, and enhanced SNG selectivity were the main targets of the study. SOEC experiments were performed on state-of-the-art button cells. Varying operating conditions (temperature, flow rate, gas mixture and current density) emphasized the capability of the system to produce tailor-made syngas mixtures for downstream methanation. Catalytic syngas methanation was performed using hydrotalcite-derived 20 %Ni-2 %Fe/(Mg,Al)Ox catalyst and commercial methanation catalyst (Ni/Al2O3) as reference. Despite water in the feed mixture, SNG with high selectivity (≥90 %) was produced at 300 °C and atmospheric pressure. An adequate rate of syngas conversion was obtained with H2O contents up to 30 %, decreasing significantly for 50 % H2O in the feed. Compared to the commercial catalyst, 20 %Ni-2 %Fe/(Mg,Al)Ox enabled a higher rate of COx conversion.
000894028 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000894028 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000894028 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894028 7001_ $$0P:(DE-Juel1)177600$$aNohl, Markus$$b1
000894028 7001_ $$0P:(DE-Juel1)171748$$aDittrich, Lucy$$b2
000894028 7001_ $$0P:(DE-Juel1)166524$$aFoit, Severin$$b3
000894028 7001_ $$0P:(DE-Juel1)129952$$ade Haart, L. G. J.$$b4
000894028 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b5$$eCorresponding author
000894028 7001_ $$0P:(DE-HGF)0$$aPalkovits, Regina$$b6$$eCorresponding author
000894028 773__ $$0PERI:(DE-600)2411405-4$$a10.1002/cssc.202002904$$gVol. 14, no. 11, p. 2295 - 2302$$n11$$p2295 - 2302$$tChemSusChem$$v14$$x1864-5631$$y2021
000894028 8564_ $$uhttps://juser.fz-juelich.de/record/894028/files/cssc.202002904.pdf$$yOpenAccess
000894028 909CO $$ooai:juser.fz-juelich.de:894028$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894028 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177600$$aForschungszentrum Jülich$$b1$$kFZJ
000894028 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171748$$aForschungszentrum Jülich$$b2$$kFZJ
000894028 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)171748$$aRWTH Aachen$$b2$$kRWTH
000894028 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166524$$aForschungszentrum Jülich$$b3$$kFZJ
000894028 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129952$$aForschungszentrum Jülich$$b4$$kFZJ
000894028 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b5$$kFZJ
000894028 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b5$$kRWTH
000894028 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b6$$kRWTH
000894028 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000894028 9141_ $$y2021
000894028 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000894028 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000894028 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMSUSCHEM : 2019$$d2021-01-29
000894028 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEMSUSCHEM : 2019$$d2021-01-29
000894028 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-29$$wger
000894028 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000894028 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000894028 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000894028 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894028 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000894028 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000894028 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000894028 920__ $$lyes
000894028 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000894028 9801_ $$aFullTexts
000894028 980__ $$ajournal
000894028 980__ $$aVDB
000894028 980__ $$aI:(DE-Juel1)IEK-9-20110218
000894028 980__ $$aUNRESTRICTED
000894028 981__ $$aI:(DE-Juel1)IET-1-20110218