001     894094
005     20240712101024.0
020 _ _ |a 978-3-95806-551-2
024 7 _ |a 2128/28403
|2 Handle
037 _ _ |a FZJ-2021-03034
100 1 _ |a Klemp, D.
|0 P:(DE-Juel1)16218
|b 0
|e Corresponding author
245 _ _ |a Distribution of trace gases with adverse effects on fuel cells
260 _ _ |a Jülich
|c 2021
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
300 _ _ |a 160
336 7 _ |a BOOK
|2 BibTeX
336 7 _ |a Book
|b book
|m book
|0 PUB:(DE-HGF)3
|s 1628060446_23762
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Book
|2 DataCite
336 7 _ |a BOOK
|2 ORCID
336 7 _ |a Book
|0 1
|2 EndNote
336 7 _ |a book
|2 DRIVER
490 0 _ |a Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment
|v 539
520 _ _ |a The introduction of fuel cell technology into the field of motor vehicle propulsionenables both a reduction in primary energy consumption and a reduction independence on the primary energy source mineral oil. A major advantage of thispropulsion technology is reduction of greenhouse gas emissions when renewableenergy is used for fuels as hydrogen [Robinius, 2019]. Moreover, fluctuations inelectricity energy supply from renewable sources can be dampened when electricityis efficiently converted and stored as hydrogen.For the competitive application of this technology of fuel cell technology in the field ofvehicle propulsion, however, considerable research is still required in some areas. Inaddition to the necessary cost and weight reduction, this also applies to the long-termstability and robustness of fuel cell stack itself.It is known that fuel cell stacks react to the admixture of harmful gases into the intakecathode air with performance losses, which primarily result from the poisoning of thecatalysts. The effect does not only depend on the total burden of pollutants but on theirpeak concentrations. With this regard there is a need for research into both the effectsof pollutants on fuel stacks and their distribution in the atmosphere.The work presented here was funded by BMWi in the period from December 2014 toNovember 2017 and describes the results of the subproject 03ET6036D, which wascarried out by Forschungszentrum Jülich
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
700 1 _ |a Wegener, R.
|0 P:(DE-Juel1)2367
|b 1
|u fzj
700 1 _ |a Dubus, R.
|0 P:(DE-Juel1)142383
|b 2
|u fzj
700 1 _ |a Karadurmus, L.
|0 P:(DE-Juel1)177090
|b 3
|u fzj
700 1 _ |a Kille, N.
|0 P:(DE-Juel1)175121
|b 4
|u fzj
700 1 _ |a Tan, Zhaofeng
|0 P:(DE-Juel1)173726
|b 5
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/894094/files/Energie_Umwelt_539.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:894094
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)16218
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)2367
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)142383
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)177090
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)175121
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)173726
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a book
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21