000894107 001__ 894107
000894107 005__ 20240712113246.0
000894107 0247_ $$2doi$$a10.1021/acsami.0c23026
000894107 0247_ $$2ISSN$$a1944-8244
000894107 0247_ $$2ISSN$$a1944-8252
000894107 0247_ $$2Handle$$a2128/28316
000894107 0247_ $$2altmetric$$aaltmetric:102069576
000894107 0247_ $$2pmid$$a33706507
000894107 0247_ $$2WOS$$aWOS:000634759500097
000894107 037__ $$aFZJ-2021-03042
000894107 082__ $$a600
000894107 1001_ $$0P:(DE-Juel1)176327$$aPark, Seongeun$$b0
000894107 245__ $$aNickel Structures as a Template Strategy to Create Shaped Iridium Electrocatalysts for Electrochemical Water Splitting
000894107 260__ $$aWashington, DC$$bSoc.$$c2021
000894107 3367_ $$2DRIVER$$aarticle
000894107 3367_ $$2DataCite$$aOutput Types/Journal article
000894107 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1626857578_2386
000894107 3367_ $$2BibTeX$$aARTICLE
000894107 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894107 3367_ $$00$$2EndNote$$aJournal Article
000894107 520__ $$aLow-cost, highly active, and highly stable catalysts are desired for the generation of hydrogen and oxygen using water electrolyzers. To enhance the kinetics of the oxygen evolution reaction in an acidic medium, it is of paramount importance to redesign iridium electrocatalysts into novel structures with organized morphology and high surface area. Here, we report on the designing of a well-defined and highly active hollow nanoframe based on iridium. The synthesis strategy was to control the shape of nickel nanostructures on which iridium nanoparticles will grow. After the growth of iridium on the surface, the next step was to etch the nickel core to form the NiIr hollow nanoframe. The etching procedure was found to be significant in controlling the hydroxide species on the iridium surface and by that affecting the performance. The catalytic performance of the NiIr hollow nanoframe was studied for oxygen evolution reaction and shows 29 times increased iridium mass activity compared to commercially available iridium-based catalysts. Our study provides novel insights to control the fabrication of iridium-shaped catalysts using 3d transition metal as a template and via a facile etching step to steer the formation of hydroxide species on the surface. These findings shall aid the community to finally create stable iridium alloys for polymer electrolyte membrane water electrolyzers, and the strategy is also useful for many other electrochemical devices such as batteries, fuel cells, sensors, and solar organic cells.
000894107 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000894107 536__ $$0G:(DE-HGF)POF4-1111$$a1111 - Effective System Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x1
000894107 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x2
000894107 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894107 7001_ $$0P:(DE-Juel1)165174$$aShviro, Meital$$b1$$eCorresponding author
000894107 7001_ $$0P:(DE-Juel1)166271$$aHartmann, Heinrich$$b2
000894107 7001_ $$0P:(DE-Juel1)133839$$aBesmehn, Astrid$$b3
000894107 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b4
000894107 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b5
000894107 7001_ $$0P:(DE-Juel1)145276$$aCarmo, Marcelo$$b6
000894107 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.0c23026$$gVol. 13, no. 11, p. 13576 - 13585$$n11$$p13576 - 13585$$tACS applied materials & interfaces$$v13$$x1944-8252$$y2021
000894107 8564_ $$uhttps://juser.fz-juelich.de/record/894107/files/acsami.0c23026.pdf$$yRestricted
000894107 8564_ $$uhttps://juser.fz-juelich.de/record/894107/files/Park_Seongeun_Nickel%20Structures%20as%20a%20Template-Strategy%20to%20Create%20Shaped%20Iridium%20Electrocatalysts....pdf$$yPublished on 2021-03-12. Available in OpenAccess from 2022-03-12.
000894107 909CO $$ooai:juser.fz-juelich.de:894107$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894107 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176327$$aForschungszentrum Jülich$$b0$$kFZJ
000894107 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)176327$$aRWTH Aachen$$b0$$kRWTH
000894107 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165174$$aForschungszentrum Jülich$$b1$$kFZJ
000894107 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166271$$aForschungszentrum Jülich$$b2$$kFZJ
000894107 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133839$$aForschungszentrum Jülich$$b3$$kFZJ
000894107 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b4$$kFZJ
000894107 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b5$$kFZJ
000894107 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b5$$kRWTH
000894107 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145276$$aForschungszentrum Jülich$$b6$$kFZJ
000894107 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000894107 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1111$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x1
000894107 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x2
000894107 9141_ $$y2021
000894107 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000894107 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000894107 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000894107 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000894107 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000894107 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2019$$d2021-01-30
000894107 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000894107 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000894107 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2019$$d2021-01-30
000894107 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000894107 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000894107 920__ $$lyes
000894107 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000894107 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x1
000894107 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x2
000894107 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x3
000894107 9801_ $$aFullTexts
000894107 980__ $$ajournal
000894107 980__ $$aVDB
000894107 980__ $$aUNRESTRICTED
000894107 980__ $$aI:(DE-Juel1)IEK-14-20191129
000894107 980__ $$aI:(DE-Juel1)IEK-3-20101013
000894107 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000894107 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000894107 981__ $$aI:(DE-Juel1)IET-4-20191129
000894107 981__ $$aI:(DE-Juel1)ICE-2-20101013
000894107 981__ $$aI:(DE-Juel1)IET-4-20191129