001     894108
005     20240712100856.0
024 7 _ |a 10.1088/1748-9326/ac109c
|2 doi
024 7 _ |a 1748-9318
|2 ISSN
024 7 _ |a 1748-9326
|2 ISSN
024 7 _ |a 2128/28254
|2 Handle
024 7 _ |a altmetric:109931076
|2 altmetric
024 7 _ |a WOS:000673142300001
|2 WOS
037 _ _ |a FZJ-2021-03043
082 _ _ |a 690
100 1 _ |a Fadnavis, Suvarna
|0 0000-0003-4442-0755
|b 0
|e Corresponding author
245 _ _ |a The impact of COVID-19 lockdown measures on the Indian summer monsoon
260 _ _ |a Bristol
|c 2021
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1626770344_25672
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Aerosol concentrations over Asia play a key role in modulating the Indian summer monsoon (ISM)rainfall. Lockdown measures imposed to prevent the spread of the COVID-19 pandemic led tosubstantial reductions in observed Asian aerosol loadings. Here, we use bottom-up estimates ofanthropogenic emissions based on national mobility data from Google and Apple, along withsimulations from the ECHAM6-HAMMOZ state-of-the-art aerosol-chemistry-climate model toinvestigate the impact of the reduced aerosol and gases pollution loadings on the ISM. We showthat the decrease in anthropogenic emissions led to a 4 W m−2 increase in surface solar radiationover parts of South Asia, which resulted in a strengthening of the ISM. Simultaneously, whilenatural emission parameterizations are kept the same in all our simulations, the anthropogenicemission reduction led to changes in the atmospheric circulation, causing accumulation of dustover the Tibetan plateau (TP) during the pre-monsoon and monsoon seasons. This accumulateddust has intensified the warm core over the TP that reinforced the intensification of the Hadleycirculation. The associated cross-equatorial moisture influx over the Indian landmass led to anenhanced amount of rainfall by 4% (0.2 mm d−1) over the Indian landmass and 5%–15%(0.8–3 mm d−1 ) over central India. These estimates may vary under the influence of large-scalecoupled atmosphere–ocean oscillations (e.g. El Nino Southern Oscillation, Indian Ocean Dipole).Our study indicates that the reduced anthropogenic emissions caused by the unprecedentedCOVID-19 restrictions had a favourable effect on the hydrological cycle over South Asia, which hasbeen facing water scarcity during the past decades. This emphasizes the need for stringentmeasures to limit future anthropogenic emissions in South Asia for protecting one of the world’smost densely populated regions.
536 _ _ |a 2112 - Climate Feedbacks (POF4-211)
|0 G:(DE-HGF)POF4-2112
|c POF4-211
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Sabin, T. P.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rap, Alexandru
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Müller, Rolf
|0 P:(DE-Juel1)129138
|b 3
700 1 _ |a Kubin, Anne
|0 0000-0003-4120-3819
|b 4
700 1 _ |a Heinold, Bernd
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1088/1748-9326/ac109c
|g Vol. 16, no. 7, p. 074054 -
|0 PERI:(DE-600)2255379-4
|n 7
|p 074054 -
|t Environmental research letters
|v 16
|y 2021
|x 1748-9326
856 4 _ |u https://juser.fz-juelich.de/record/894108/files/Fadnavis_2021_Environ._Res._Lett._16_074054.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:894108
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a University of Leeds
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129138
910 1 _ |a Leibniz-Institut für Troposphärenforschung,
|0 I:(DE-HGF)0
|b 4
|6 0000-0003-4120-3819
910 1 _ |a Leibniz-Institut für Troposphärenforschung,
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-02-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENVIRON RES LETT : 2019
|d 2021-02-04
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ENVIRON RES LETT : 2019
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-02-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-04
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-04
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21