000894111 001__ 894111
000894111 005__ 20220930130322.0
000894111 0247_ $$2doi$$a10.1021/acsaelm.1c00398
000894111 0247_ $$2Handle$$a2128/29015
000894111 0247_ $$2altmetric$$aaltmetric:113132706
000894111 0247_ $$2WOS$$aWOS:000703541500001
000894111 037__ $$aFZJ-2021-03044
000894111 082__ $$a620
000894111 1001_ $$0P:(DE-Juel1)165703$$aFunck, Carsten$$b0
000894111 245__ $$aA comprehensive model of electron conduction in oxide-based memristive devices
000894111 260__ $$aWashington, DC$$bACS Publications$$c2021
000894111 3367_ $$2DRIVER$$aarticle
000894111 3367_ $$2DataCite$$aOutput Types/Journal article
000894111 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643190868_29329
000894111 3367_ $$2BibTeX$$aARTICLE
000894111 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894111 3367_ $$00$$2EndNote$$aJournal Article
000894111 520__ $$aMemristive devices are two-terminal devices that can change their resistance state upon application of appropriate voltage stimuli. The resistance can be tuned over a wide resistance range enabling applications such as multibit data storage or analog computing-in-memory concepts. One of the most promising classes of memristive devices is based on the valence change mechanism in oxide-based devices. In these devices, a configurational change of oxygen defects, i.e. oxygen vacancies, leads to the change of the device resistance. A microscopic understanding of the conduction is necessary in order to design memristive devices with specific resistance properties. In this paper, we discuss the conduction mechanism proposed in the literature and propose a comprehensive, microscopic model of the conduction mechanism in this class of devices. To develop this microscopic picture of the conduction, ab initio simulation models are developed. These simulations suggest two different types of conduction, which are both limited by a tunneling through the Schottky barrier at the metal electrode contact. The difference between the two conduction mechanisms is the following: for the first type, the electrons tunnel into the conduction band and, in the second type, into the vacancy defect states. These two types of conduction differ in their current voltage relation, which has been detected experimentally. The origin of the resistive switching is identical for the two types of conduction and is based on a modification of the tunneling distance due to the oxygen vacancy induced screening of the Schottky barrier. This understanding may help to design optimized devices in terms of the dynamic resistance range for specific applications.
000894111 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000894111 536__ $$0G:(BMBF)16ES1133K$$aVerbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC -, Teilvorhaben: Forschungszentrum Jülich (16ES1133K)$$c16ES1133K$$x1
000894111 536__ $$0G:(DE-82)BMBF-16ES1134$$aBMBF-16ES1134 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC - (BMBF-16ES1134)$$cBMBF-16ES1134$$x2
000894111 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894111 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b1$$eCorresponding author
000894111 773__ $$0PERI:(DE-600)2949097-2$$a10.1021/acsaelm.1c00398$$gVol. 3, no. 9, p. 3674 - 3692$$n9$$p3674 - 3692$$tACS applied electronic materials$$v3$$x2637-6113$$y2021
000894111 8564_ $$uhttps://juser.fz-juelich.de/record/894111/files/APC600233909.pdf
000894111 8564_ $$uhttps://juser.fz-juelich.de/record/894111/files/acsaelm.1c00398.pdf$$yOpenAccess
000894111 8767_ $$8APC600233909$$92021-07-20$$d2021-07-22$$eHybrid-OA$$jZahlung erfolgt$$z4,750.00 USD / Belegnr. 1200170090
000894111 909CO $$ooai:juser.fz-juelich.de:894111$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000894111 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165703$$aForschungszentrum Jülich$$b0$$kFZJ
000894111 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b1$$kFZJ
000894111 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000894111 9141_ $$y2021
000894111 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-09
000894111 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894111 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-09-09
000894111 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894111 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-09
000894111 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-09
000894111 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000894111 980__ $$ajournal
000894111 980__ $$aVDB
000894111 980__ $$aI:(DE-Juel1)PGI-7-20110106
000894111 980__ $$aAPC
000894111 980__ $$aUNRESTRICTED
000894111 9801_ $$aAPC
000894111 9801_ $$aFullTexts