Home > Publications database > Exploring Area-Dependent Pr0.7Ca0.3MnO3-Based Memristive Devices as Synapses in Spiking and Artificial Neural Networks > print |
001 | 894113 | ||
005 | 20230310131347.0 | ||
024 | 7 | _ | |a 10.3389/fnins.2021.661261 |2 doi |
024 | 7 | _ | |a 1662-453X |2 ISSN |
024 | 7 | _ | |a 1662-4548 |2 ISSN |
024 | 7 | _ | |a 2128/28304 |2 Handle |
024 | 7 | _ | |a altmetric:110016607 |2 altmetric |
024 | 7 | _ | |a 34276286 |2 pmid |
024 | 7 | _ | |a WOS:000674438100001 |2 WOS |
037 | _ | _ | |a FZJ-2021-03046 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Gutsche, Alexander |0 P:(DE-Juel1)173699 |b 0 |e Corresponding author |
245 | _ | _ | |a Exploring Area-Dependent Pr0.7Ca0.3MnO3-Based Memristive Devices as Synapses in Spiking and Artificial Neural Networks |
260 | _ | _ | |a Lausanne |c 2021 |b Frontiers Research Foundation |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1643899596_27544 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Memristive devices are novel electronic devices, which resistance can be tuned by an external voltage in a non-volatile way. Due to their analog resistive switching behavior, they are considered to emulate the behavior of synapses in neuronal networks. In this work, we investigate memristive devices based on the field-driven redox process between the p-conducting Pr0.7Ca0.3MnO3 (PCMO) and different tunnel barriers, namely, Al2O3, Ta2O5, and WO3. In contrast to the more common filamentary-type switching devices, the resistance range of these area-dependent switching devices can be adapted to the requirements of the surrounding circuit. We investigate the impact of the tunnel barrier layer on the switching performance including area scaling of the current and variability. Best performance with respect to the resistance window and the variability is observed for PCMO with a native Al2O3 tunnel oxide. For all different layer stacks, we demonstrate a spike timing dependent plasticity like behavior of the investigated PCMO cells. Furthermore, we can also tune the resistance in an analog fashion by repeated switching the device with voltage pulses of the same amplitude and polarity. Both measurements resemble the plasticity of biological synapses. We investigate in detail the impact of different pulse heights and pulse lengths on the shape of the stepwise SET and RESET curves. We use these measurements as input for the simulation of training and inference in a multilayer perceptron for pattern recognition, to show the use of PCMO-based ReRAM devices as weights in artificial neural networks which are trained by gradient descent methods. Based on this, we identify certain trends for the impact of the applied voltages and pulse length on the resulting shape of the measured curves and on the learning rate and accuracy of the multilayer perceptron. |
536 | _ | _ | |a 5233 - Memristive Materials and Devices (POF4-523) |0 G:(DE-HGF)POF4-5233 |c POF4-523 |x 0 |f POF IV |
536 | _ | _ | |a BMBF-16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K) |0 G:(DE-82)BMBF-16ME0398K |c BMBF-16ME0398K |x 1 |
536 | _ | _ | |a ACA - Advanced Computing Architectures (SO-092) |0 G:(DE-HGF)SO-092 |c SO-092 |x 2 |
536 | _ | _ | |a DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811) |0 G:(GEPRIS)167917811 |c 167917811 |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Siegel, Sebastian |0 P:(DE-Juel1)174486 |b 1 |
700 | 1 | _ | |a Zhang, Jinchao |0 P:(DE-Juel1)179019 |b 2 |
700 | 1 | _ | |a Hambsch, Sebastian |0 P:(DE-Juel1)174430 |b 3 |
700 | 1 | _ | |a Dittmann, Regina |0 P:(DE-Juel1)130620 |b 4 |
773 | _ | _ | |a 10.3389/fnins.2021.661261 |g Vol. 15, p. 661261 |0 PERI:(DE-600)2411902-7 |p 661261 |t Frontiers in neuroscience |v 15 |y 2021 |x 1662-453X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/894113/files/fnins-15-661261.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:894113 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)173699 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)174486 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)174430 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130620 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5233 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-05-04 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b FRONT NEUROSCI-SWITZ : 2019 |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2021-05-04 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-05-04 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-05-04 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-05-04 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-05-04 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-05-04 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-10-20170113 |k PGI-10 |l JARA Institut Green IT |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-10-20170113 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|