001     894123
005     20240709081919.0
024 7 _ |a 10.1021/acsami.1c07490
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a 2128/28575
|2 Handle
024 7 _ |a altmetric:109613966
|2 altmetric
024 7 _ |a pmid:34264641
|2 pmid
024 7 _ |a WOS:000679917500047
|2 WOS
037 _ _ |a FZJ-2021-03050
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Wellmann, Julia
|0 P:(DE-Juel1)178813
|b 0
245 _ _ |a Effective Solid Electrolyte Interphase Formation on Lithium Metal Anodes by Mechanochemical Modification
260 _ _ |a Washington, DC
|c 2021
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1630398295_10533
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Lithium metal batteries are gaining increasing attention due to their potential for significantly higher theoretical energy density than conventional lithium ion batteries. Here, we present a novel mechanochemical modification method for lithium metal anodes, involving roll-pressing the lithium metal foil in contact with ionic liquid-based solutions, enabling the formation of an artificial solid electrolyte interphase with favorable properties such as an improved lithium ion transport and, most importantly, the suppression of dendrite growth, allowing homogeneous electrodeposition/-dissolution using conventional and highly conductive room temperature alkyl carbonate-based electrolytes. As a result, stable cycling in symmetrical Li∥Li cells is achieved even at a high current density of 10 mA cm–2. Furthermore, the rate capability and the capacity retention in NMC∥Li cells are significantly improved.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a SPIDER - Safe and Prelithiated hIgh energy DEnsity batteries based on sulphur Rocksalt and silicon chemistries (814389)
|0 G:(EU-Grant)814389
|c 814389
|f H2020-NMBP-ST-IND-2018
|x 1
536 _ _ |a VIDICAT - Versatile Ionomers for DIvalent CAlcium baTteries (829145)
|0 G:(EU-Grant)829145
|c 829145
|f H2020-FETOPEN-2018-2019-2020-01
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Brinkmann, Jan-Paul
|0 P:(DE-Juel1)176761
|b 1
|u fzj
700 1 _ |a Wankmiller, Björn
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Neuhaus, Kerstin
|0 P:(DE-Juel1)181017
|b 3
|u fzj
700 1 _ |a Rodehorst, Uta
|0 P:(DE-Juel1)178947
|b 4
|u fzj
700 1 _ |a Hansen, Michael R.
|0 0000-0001-7114-8051
|b 5
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 6
|u fzj
700 1 _ |a Paillard, Elie
|0 P:(DE-Juel1)166311
|b 7
|e Corresponding author
773 _ _ |a 10.1021/acsami.1c07490
|g p. acsami.1c07490
|0 PERI:(DE-600)2467494-1
|n 29
|p 34227–34237
|t ACS applied materials & interfaces
|v 13
|y 2021
|x 1944-8244
856 4 _ |u https://pubs.acs.org/doi/full/10.1021/acsami.1c07490
856 4 _ |u https://juser.fz-juelich.de/record/894123/files/am-2021-07490j_Main_Manuscript_2ndRevision.pdf
|y Published on 2021-07-15. Available in OpenAccess from 2022-07-15.
909 C O |o oai:juser.fz-juelich.de:894123
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178813
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176761
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)181017
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)178947
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-30
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2019
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21