000894130 001__ 894130
000894130 005__ 20210810182028.0
000894130 0247_ $$2doi$$a10.3390/polym13142235
000894130 0247_ $$2Handle$$a2128/28361
000894130 0247_ $$2altmetric$$aaltmetric:110395944
000894130 0247_ $$2pmid$$a34300992
000894130 0247_ $$2WOS$$aWOS:000677180200001
000894130 037__ $$aFZJ-2021-03057
000894130 082__ $$a540
000894130 1001_ $$0P:(DE-Juel1)140548$$aBras, Ana$$b0$$eCorresponding author
000894130 245__ $$aChain-End Effects on Supramolecular Poly(ethylene glycol) Polymers
000894130 260__ $$aBasel$$bMDPI$$c2021
000894130 3367_ $$2DRIVER$$aarticle
000894130 3367_ $$2DataCite$$aOutput Types/Journal article
000894130 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1627554730_29226
000894130 3367_ $$2BibTeX$$aARTICLE
000894130 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894130 3367_ $$00$$2EndNote$$aJournal Article
000894130 520__ $$aIn this work we present a fundamental analysis based on small-angle scattering, linear rheology and differential scanning calorimetry (DSC) experiments of the role of different hydrogen bonding (H-bonding) types on the structure and dynamics of chain-end modified poly(ethylene glycol) (PEG) in bulk. As such bifunctional PEG with a molar mass below the entanglement mass Me is symmetrically end-functionalized with three different hydrogen bonding (H-bonding) groups: thymine-1-acetic acid (thy), diamino-triazine (dat) and 2-ureido-4[1H]-pyrimidinone (upy). A linear block copolymer structure and a Newtonian-like dynamics is observed for PEG-thy/dat while results for PEG-upy structure and dynamics reveal a sphere and a network-like behavior, respectively. These observations are concomitant with an increase of the Flory–Huggins interaction parameter from PEG-thy/dat to PEG-upy that is used to quantify the difference between the H-bonding types. The upy association into spherical clusters is established by the Percus–Yevick approximation that models the inter-particle structure factor for PEG-upy. Moreover, the viscosity study reveals for PEG-upy a shear thickening behavior interpreted in terms of the free path model and related to the time for PEG-upy to dissociate from the upy clusters, seen as virtual crosslinks of the formed network. Moreover, a second relaxation time of different nature is also obtained from the complex shear modulus measurements of PEG-upy by the inverse of the angular frequency where G’ and G’’ crosses from the network-like to glass-like transition relaxation time, which is related to the segmental friction of PEG-upy polymeric network strands. In fact, not only do PEG-thy/dat and PEG-upy have different viscoelastic properties, but the relaxation times found for PEG-upy are much slower than the ones for PEG-thy/dat. However, the activation energy related to the association dynamics is very similar for both PEG-thy/dat and PEG-upy. Concerning the segmental dynamics, the glass transition temperature obtained from both rheological and calorimetric analysis is similar and increases for PEG-upy while for PEG-thy/dat is almost independent of association behavior. Our results show how supramolecular PEG properties vary by modifying the H-bonding association type and changing the molecular Flory–Huggins interaction parameter, which can be further explored for possible applications
000894130 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000894130 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
000894130 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894130 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000894130 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0
000894130 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000894130 7001_ $$0P:(DE-HGF)0$$aArizaga, Ana$$b1
000894130 7001_ $$0P:(DE-HGF)0$$aAgirre, Uxue$$b2
000894130 7001_ $$0P:(DE-HGF)0$$aDorau, Marie$$b3
000894130 7001_ $$0P:(DE-Juel1)171614$$aHouston, Judith$$b4
000894130 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b5
000894130 7001_ $$0P:(DE-Juel1)130777$$aKruteva, Margarita$$b6
000894130 7001_ $$0P:(DE-Juel1)130902$$aPyckhout-Hintzen, Wim$$b7
000894130 7001_ $$0P:(DE-Juel1)IHRS-BioSoft-140015$$aSchmidt, Annette M.$$b8
000894130 773__ $$0PERI:(DE-600)2527146-5$$a10.3390/polym13142235$$gVol. 13, no. 14, p. 2235 -$$n14$$p2235$$tPolymers$$v13$$x2073-4360$$y2021
000894130 8564_ $$uhttps://juser.fz-juelich.de/record/894130/files/polymers-13-02235-v2.pdf$$yOpenAccess
000894130 909CO $$ooai:juser.fz-juelich.de:894130$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000894130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich$$b5$$kFZJ
000894130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130777$$aForschungszentrum Jülich$$b6$$kFZJ
000894130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130902$$aForschungszentrum Jülich$$b7$$kFZJ
000894130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)IHRS-BioSoft-140015$$aForschungszentrum Jülich$$b8$$kFZJ
000894130 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000894130 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x1
000894130 9141_ $$y2021
000894130 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000894130 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000894130 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894130 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000894130 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPOLYMERS-BASEL : 2019$$d2021-05-04
000894130 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000894130 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000894130 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000894130 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000894130 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000894130 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000894130 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894130 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000894130 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000894130 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000894130 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000894130 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000894130 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000894130 920__ $$lyes
000894130 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000894130 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000894130 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x2
000894130 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x3
000894130 980__ $$ajournal
000894130 980__ $$aVDB
000894130 980__ $$aUNRESTRICTED
000894130 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000894130 980__ $$aI:(DE-588b)4597118-3
000894130 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000894130 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000894130 9801_ $$aFullTexts