001     894170
005     20230815122846.0
024 7 _ |a 10.15252/embr.202152507
|2 doi
024 7 _ |a 1469-221X
|2 ISSN
024 7 _ |a 1469-3178
|2 ISSN
024 7 _ |a 2128/28422
|2 Handle
024 7 _ |a altmetric:110478881
|2 altmetric
024 7 _ |a 34309183
|2 pmid
024 7 _ |a WOS:000678791100001
|2 WOS
037 _ _ |a FZJ-2021-03072
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Höhfeld, Jörg
|0 0000-0003-4403-0757
|b 0
|e Corresponding author
245 _ _ |a Maintaining proteostasis under mechanical stress
260 _ _ |a Hoboken, NJ [u.a.]
|c 2021
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1628161810_16699
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cell survival, tissue integrity and organismal health depend on the ability to maintain functional protein networks even under conditions that threaten protein integrity. Protection against such stress conditions involves the adaptation of folding and degradation machineries, which help to preserve the protein network by facilitating the refolding or disposal of damaged proteins. In multicellular organisms, cells are permanently exposed to stress resulting from mechanical forces. Yet, for long time mechanical stress was not recognized as a primary stressor that perturbs protein structure and threatens proteome integrity. The identification and characterization of protein folding and degradation systems, which handle force-unfolded proteins, marks a turning point in this regard. It has become apparent that mechanical stress protection operates during cell differentiation, adhesion and migration and is essential for maintaining tissues such as skeletal muscle, heart and kidney as well as the immune system. Here, we provide an overview of recent advances in our understanding of mechanical stress protection.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|x 0
|f POF IV
536 _ _ |a DFG project 273723265 - Mechanosensation und Mechanoreaktion in epidermalen Systemen
|0 G:(GEPRIS)273723265
|c 273723265
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Benzing, Thomas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bloch, Wilhelm
|0 0000-0003-1786-8853
|b 2
700 1 _ |a Fürst, Dieter O
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gehlert, Sebastian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hesse, Michael
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hoffmann, Bernd
|0 P:(DE-Juel1)128817
|b 6
|u fzj
700 1 _ |a Hoppe, Thorsten
|0 0000-0002-4734-9352
|b 7
700 1 _ |a Huesgen, Pitter F
|0 P:(DE-Juel1)162356
|b 8
700 1 _ |a Köhn, Maja
|0 0000-0001-8142-3504
|b 9
700 1 _ |a Kolanus, Waldemar
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Merkel, Rudolf
|0 P:(DE-Juel1)128833
|b 11
700 1 _ |a Niessen, Carien M
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Pokrzywa, Wojciech
|0 0000-0002-5110-4462
|b 13
700 1 _ |a Rinschen, Markus M
|0 0000-0002-9252-1342
|b 14
700 1 _ |a Wachten, Dagmar
|0 0000-0003-4800-6332
|b 15
700 1 _ |a Warscheid, Bettina
|0 0000-0001-5096-1975
|b 16
773 _ _ |a 10.15252/embr.202152507
|0 PERI:(DE-600)2025376-X
|p e52507
|t EMBO reports
|v 22
|y 2021
|x 1469-3178
856 4 _ |u https://juser.fz-juelich.de/record/894170/files/embr.202152507.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:894170
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128817
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)162356
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)128833
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EMBO REP : 2019
|d 2021-02-03
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EMBO REP : 2019
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-2-20200312
|k IBI-2
|l Mechanobiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-2-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21